This application implements a Retrieval-Augmented Generation (RAG) system using Llama 3.2 via Ollama, with Qdrant as the vector database.
- Fully local RAG implementation
- Powered by Llama 3.2 through Ollama
- Vector search using Qdrant
- Interactive playground interface
- No external API dependencies
- Clone the GitHub repository
git clone https://github.com/Shubhamsaboo/awesome-llm-apps.git
- Install the required dependencies:
cd rag_tutorials/local_rag_agent
pip install -r requirements.txt
- Install and start Qdrant vector database locally
docker pull qdrant/qdrant
docker run -p 6333:6333 qdrant/qdrant
- Install Ollama and pull Llama 3.2 for LLM and OpenHermes as the embedder for OllamaEmbedder
ollama pull llama3.2
ollama pull openhermes
- Run the AI RAG Agent
python local_rag_agent.py
- Open your web browser and navigate to the URL provided in the console output to interact with the RAG agent through the playground interface.