A fast, optionally multithreaded Constructive Solid Geometry (CSG) library in Rust, built around Boolean operations (union, difference, intersection, xor) on sets of polygons stored in BSP trees. csgrs constructs 2D and 3D geometry with an OpenSCAD-like syntax, and transforms, interrogates, and simulates without leaving Rust. csgrs aims to be light weight and full featured by integrating with the Dimforge ecosystem (e.g., nalgebra
, Parry
, and Rapier
) and geo
for robust processing of Simple Features. csgrs has a number of functions useful for generating CNC toolpaths. The library can be built to use 32bit or 64bit floats, dependencies are 100% rust and nearly all optional.
The BSP tree works with polygons made of lines. csgrs interpolates all curves when working in 3D so that they can be processed using the BSP tree. earcutr
is used by geo
for tessellation, and only works in 2D, so csgrs rotates 3D polygons into 2D for tessellation then back to 3D.
Install the Rust language tools from rustup.rs.
cargo new my_cad_project
cd my_cad_project
cargo add csgrs
// Alias the library’s generic CSG type with empty metadata:
type CSG = csgrs::csg::CSG<()>;
// Create two shapes:
let cube = CSG::cube(2.0, 2.0, 2.0, None); // 2×2×2 cube at origin, no metadata
let sphere = CSG::sphere(1.0, 16, 8, None); // sphere of radius=1 at origin, no metadata
// Difference one from the other:
let difference_result = cube.difference(&sphere);
// Write the result as an ASCII STL:
let stl = difference_result.to_stl_ascii("cube_minus_sphere");
std::fs::write("cube_sphere_difference.stl", stl).unwrap();
CSG<S>
is the main type. It stores:- a
Vec<Polygon<S>>
polygons, describing 3D shapes, eachPolygon<S>
holds:- a
Vec<Vertex>
(positions + normals), - a
Plane
describing the polygon’s orientation in 3D. - an optional metadata field (
Option<S>
) defined by you
- a
- a
geo
GeometryCollection<Real>
- another optional metadata field (
Option<S>
) also defined by you
- a
CSG<S>
provides methods for working with 2D and 3D shapes. You can build a CSG<S>
from polygons with CSG::from_polygons(...)
or from geo Geometries with CSG::from_geo(...)
. Polygons must be closed, planar, have 3 or more vertices, and are 3D. Geometries can be open or closed, have holes, but must be planar in the XY. Operations work on both 2D and 3D shapes though they generally do not interact except where one is explicitly transformed into the other as in extrude or slice. Polygons and Geometries are triangulated with earcutr
when being exported as an STL, or when a Geometry is converted into polygons using CSG::to_polygons(...)
.
CSG::square(width: Real, length: Real, metadata: Option<S>)
CSG::circle(radius: Real, segments: usize, metadata: Option<S>)
CSG::polygon(&[[x1,y1],[x2,y2],...], metadata: Option<S>)
CSG::rounded_rectangle(width: Real, height: Real, corner_radius: Real, corner_segments: usize, metadata: Option<S>)
CSG::ellipse(width: Real, height: Real, segments: usize, metadata: Option<S>)
CSG::regular_ngon(sides: usize, radius: Real, metadata: Option<S>)
CSG::right_triangle(width: Real, height: Real, metadata: Option<S>)
CSG::trapezoid(top_width: Real, bottom_width: Real, height: Real, top_offset: Real, metadata: Option<S>)
CSG::star(num_points: usize, outer_radius: Real, inner_radius: Real, metadata: Option<S>)
CSG::teardrop(width: Real, height: Real, segments: usize, metadata: Option<S>)
CSG::egg_outline(width: Real, length: Real, segments: usize, metadata: Option<S>)
CSG::squircle(width: Real, height: Real, segments: usize, metadata: Option<S>)
CSG::keyhole(circle_radius: Real, handle_width: Real, handle_height: Real, segments: usize, metadata: Option<S>)
CSG::reuleaux_polygon(sides: usize, radius: Real, arc_segments_per_side: usize, metadata: Option<S>)
final shape not yet achievedCSG::ring(id: Real, thickness: Real, segments: usize, metadata: Option<S>)
CSG::pie_slice(radius: Real, start_angle_deg: Real, end_angle_deg: Real, segments: usize, metadata: Option<S>)
CSG::metaball_2d(balls: &[(nalgebra::Point2<Real>, Real)], resolution: (usize, usize), iso_value: Real, padding: Real, metadata: Option<S>)
failing at the moment, pending reworkCSG::supershape(a: Real, b: Real, m: Real, n1: Real, n2: Real, n3: Real, segments: usize, metadata: Option<S>)
CSG::circle_with_keyway(radius: Real, segments: usize, key_width: Real, key_depth: Real, metadata: Option<S>)
CSG::circle_with_flat(radius: Real, segments: usize, flat_dist: Real, metadata: Option<S>)
CSG::circle_with_two_flats(radius: Real, segments: usize, flat_dist: Real, metadata: Option<S>)
CSG::from_image(img: &GrayImage, threshold: u8, closepaths: bool, metadata: Option<S>)
- Builds a new CSG from the “on” pixels of a grayscale imageCSG::text(text: &str, font_data: &[u8], size: Real, metadata: Option<S>)
- generate 2D text geometry in the XY plane from TTF fonts viameshtext
let square = CSG::square(1.0, 1.0, None); // 1×1 at origin
let rect = CSG::square(2.0, 4.0, None);
let circle = CSG::circle(1.0, 32, None); // radius=1, 32 segments
let circle2 = CSG::circle(2.0, 64, None);
let font_data = include_bytes!("../fonts/MyFont.ttf");
let csg_text = CSG::text("Hello!", font_data, 20.0, None);
// Then extrude the text to make it 3D:
let text_3d = csg_text.extrude(1.0);
Extrusions build 3D polygons from 2D Geometries.
CSG::extrude(height: Real)
- Simple extrude in Z+CSG::extrude_vector(direction: Vector3)
- Extrude along Vector3 directionCSG::extrude_between(&polygon_bottom.polygons[0], &polygon_top.polygons[0], false)
- Extrude Between Two BSP PolygonsCSG::rotate_extrude(angle_degs, segments)
- Extrude while rotating around the Y axis
let square = CSG::square(2.0, 2.0, None);
let prism = square.extrude(5.0);
let revolve_shape = square.rotate_extrude(360.0, 16);
let polygon_bottom = CSG::circle(2.0, 64, None);
let polygon_top = polygon_bottom.translate(0.0, 0.0, 5.0);
let lofted = CSG::extrude_between(&polygon_bottom.polygons[0], &polygon_top.polygons[0], false);
CSG::cube(width: Real, length: Real, height: Real, metadata: Option<S>)
CSG::sphere(radius: Real, segments: usize, stacks: usize, metadata: Option<S>)
CSG::cylinder(radius: Real, height: Real, segments: usize, metadata: Option<S>)
CSG::frustrum(radius1: Real, radius2: Real, height: Real, segments: usize, metadata: Option<S>)
- Construct a frustum at origin with height andradius1
andradius2
CSG::frustrum_ptp(start: Point3, end: Point3, radius1: Real, radius2: Real, segments: usize, metadata: Option<S>)
- Construct a frustum fromstart
toend
withradius1
andradius2
CSG::polyhedron(points: &[[Real; 3]], faces: &[Vec<usize>], metadata: Option<S>)
CSG::egg(width: Real, length: Real, revolve_segments: usize, outline_segments: usize, metadata: Option<S>)
CSG::teardrop(width: Real, height: Real, revolve_segments: usize, shape_segments: usize, metadata: Option<S>)
CSG::teardrop_cylinder(width: Real, length: Real, height: Real, shape_segments: usize, metadata: Option<S>)
CSG::ellipsoid(rx: Real, ry: Real, rz: Real, segments: usize, stacks: usize, metadata: Option<S>)
CSG::metaballs(balls: &[MetaBall], resolution: (usize, usize, usize), iso_value: Real, padding: Real, metadata: Option<S>)
CSG::sdf<F>(sdf: F, resolution: (usize, usize, usize), min_pt: Point3, max_pt: Point3, iso_value: Real, metadata: Option<S>)
- Return a CSG created by meshing a signed distance field within a bounding boxCSG::gyroid(resolution: usize, period: Real, iso_value: Real, metadata: Option<S>)
- Generate a Triply Periodic Minimal Surface (Gyroid) inside the volume ofself
// Unit cube at origin, no metadata
let cube = CSG::cube(1.0, 1.0, 1.0, None);
// Sphere of radius=2 at origin with 32 segments and 16 stacks
let sphere = CSG::sphere(2.0, 32, 16, None);
// Cylinder from radius=1, height=2, 16 segments, and no metadata
let cyl = CSG::cylinder(1.0, 2.0, 16, None);
// Create a custom polyhedron from points and face indices:
let points = &[
[0.0, 0.0, 0.0],
[1.0, 0.0, 0.0],
[1.0, 1.0, 0.0],
[0.0, 1.0, 0.0],
[0.5, 0.5, 1.0],
];
let faces = vec![
vec![0, 1, 2, 3], // base rectangle
vec![0, 1, 4], // triangular side
vec![1, 2, 4],
vec![2, 3, 4],
vec![3, 0, 4],
];
let pyramid = CSG::polyhedron(points, &faces, None);
// Metaballs https://en.wikipedia.org/wiki/Metaballs
use csgrs::csg::MetaBall;
let balls = vec![
MetaBall::new(Point3::origin(), 1.0),
MetaBall::new(Point3::new(1.5, 0.0, 0.0), 1.0),
];
let resolution = (60, 60, 60);
let iso_value = 1.0;
let padding = 1.0;
let metaball_csg = CSG::from_metaballs(
&balls,
resolution,
iso_value,
padding,
None,
);
// Example Signed Distance Field for a sphere of radius 1.5 centered at (0,0,0)
let my_sdf = |p: &Point3<Real>| p.coords.norm() - 1.5;
let resolution = (60, 60, 60);
let min_pt = Point3::new(-2.0, -2.0, -2.0);
let max_pt = Point3::new( 2.0, 2.0, 2.0);
let iso_value = 0.0; // Typically zero for SDF-based surfaces
let csg_shape = CSG::from_sdf(my_sdf, resolution, min_pt, max_pt, iso_value, None);
let union_result = cube.union(&sphere);
let difference_result = cube.difference(&sphere);
let intersection_result = cylinder.intersection(&sphere);
They all return a new CSG<S>
CSG::translate(x: Real, y: Real, z: Real)
- Returns the CSG translated by x, y, and zCSG::translate_vector(vector: Vector3)
- Returns the CSG translated by vectorCSG::rotate(x_deg, y_deg, z_deg)
- Returns the CSG rotated in x, y, and zCSG::scale(scale_x, scale_y, scale_z)
- Returns the CSG scaled in x, y, and zCSG::mirror(plane: Plane)
- Returns the CSG mirrored across planeCSG::center()
- Returns the CSG centered at the originCSG::float()
- Returns the CSG translated so that its bottommost point(s) sit exactly at z=0CSG::transform(&Matrix4)
- Returns the CSG after applying arbitrary affine transformsCSG::distribute_arc(count: usize, radius: Real, start_angle_deg: Real, end_angle_deg: Real)
CSG::distribute_linear(count: usize, dir: nalgebra::Vector3, spacing: Real)
CSG::distribute_grid(rows: usize, cols: usize, dx: Real, dy: Real)
use nalgebra::Vector3;
use csgrs::plane::Plane;
let moved = cube.translate(3.0, 0.0, 0.0);
let moved2 = cube.translate_vector(Vector3::new(3.0, 0.0, 0.0));
let rotated = sphere.rotate(0.0, 45.0, 90.0);
let scaled = cylinder.scale(2.0, 1.0, 1.0);
let plane_x = Plane { normal: Vector3::x(), w: 0.0 }; // x=0 plane
let plane_y = Plane { normal: Vector3::y(), w: 0.0 }; // y=0 plane
let plane_z = Plane { normal: Vector3::z(), w: 0.0 }; // z=0 plane
let mirrored = cube.mirror(plane_x);
CSG::vertices()
— collect all vertices from the CSGCSG::inverse()
— flips the inside/outside orientation.CSG::convex_hull()
— useschull
to generate a 3D convex hull.CSG::minkowski_sum(&other)
— naive Minkowski sum, then takes the hull.CSG::ray_intersections(origin, direction)
— returns all intersection points and distances.CSG::flatten()
— flattens a 3D shape into 2D (on the XY plane), unions the outlines.CSG::slice(plane)
— slices the CSG by a plane and returns the cross-section polygons.CSG::offset(distance)
— outward (or inward) offset in 2D usinggeo-offset
.CSG::subdivide_triangles(subdivisions)
— subdivides each polygon’s triangles, increasing mesh density.CSG::renormalize()
— re-computes each polygon’s plane from its vertices, resetting all normals.CSG::bounding_box()
— computes the bounding box of the shape.CSG::triangulate()
— triangulates all polygons returning a CSG containing triangles.CSG::from_polygons(polygons: &[Polygon<S>])
- create a new CSG from Polygons.
- Export ASCII STL:
csg.to_stl_ascii("solid_name") -> String
- Export Binary STL:
csg.to_stl_binary("solid_name") -> io::Result<Vec<u8>>
- Import STL:
CSG::from_stl(&stl_data) -> io::Result<CSG<S>>
// Save to ASCII STL
let stl_text = csg_union.to_stl_ascii("union_solid");
std::fs::write("union_ascii.stl", stl_text).unwrap();
// Save to binary STL
let stl_bytes = csg_union.to_stl_binary("union_solid").unwrap();
std::fs::write("union_bin.stl", stl_bytes).unwrap();
// Load from an STL file on disk
let file_data = std::fs::read("some_file.stl")?;
let imported_csg = CSG::from_stl(&file_data)?;
- Export:
csg.to_dxf() -> Result<Vec<u8>, Box<dyn Error>>
- Import:
CSG::from_dxf(&dxf_data) -> Result<CSG<S>, Box<dyn Error>>
// Export DXF
let dxf_bytes = csg_obj.to_dxf()?;
std::fs::write("output.dxf", dxf_bytes)?;
// Import DXF
let dxf_data = std::fs::read("some_file.dxf")?;
let csg_dxf = CSG::from_dxf(&dxf_data)?;
Hershey fonts are single stroke fonts which produce open ended polylines in the XY plane via hershey
:
let font_data = include_bytes("../fonts/myfont.jhf");
let csg_text = CSG::from_hershey("Hello!", font_data, 20.0, None);
csg.to_trimesh()
returns a SharedShape
containing a TriMesh<Real>
.
use csgrs::csg::CSG;
use csgrs::float_types::rapier3d::prelude::*; // re-exported for f32/f64 support
let trimesh_shape = csg_obj.to_trimesh(); // SharedShape with a TriMesh
csg.to_rigid_body(rb_set, co_set, translation, rotation, density)
helps build and insert both a rigid body and a collider:
use nalgebra::Vector3;
use csgrs::float_types::rapier3d::prelude::*; // re-exported for f32/f64 support
use csgrs::float_types::FRAC_PI_2;
use csgrs::csg::CSG;
let mut rb_set = RigidBodySet::new();
let mut co_set = ColliderSet::new();
let axis_angle = Vector3::z() * FRAC_PI_2; // 90° around Z
let rb_handle = csg_obj.to_rigid_body(
&mut rb_set,
&mut co_set,
Vector3::new(0.0, 0.0, 0.0), // translation
axis_angle, // axis-angle
1.0, // density
);
let density = 1.0;
let (mass, com, inertia_frame) = csg_obj.mass_properties(density);
println!("Mass: {}", mass);
println!("Center of Mass: {:?}", com);
println!("Inertia local frame: {:?}", inertia_frame);
csg.is_manifold()
triangulates the CSG, builds a HashMap of all edges (pairs of vertices), and checks that each is used exactly twice. Returns true
if manifold, false
if not.
if (csg_obj.is_manifold()){
println!("CSG is manifold!");
} else {
println!("Not manifold.");
}
CSG<S>
is generic over S: Clone
. Each polygon has an optional metadata: Option<S>
.
Use cases include storing color, ID, or layer info.
use csgrs::polygon::Polygon;
use csgrs::vertex::Vertex;
use nalgebra::{Point3, Vector3};
#[derive(Clone)]
struct MyMetadata {
color: (u8, u8, u8),
label: String,
}
type CSG = csgrs::CSG<MyMetadata>;
// For a single polygon:
let mut poly = Polygon::new(
vec![
Vertex::new(Point3::origin(), Vector3::z()),
Vertex::new(Point3::new(1.0, 0.0, 0.0), Vector3::z()),
Vertex::new(Point3::new(0.0, 1.0, 0.0), Vector3::z()),
],
Some(MyMetadata {
color: (255, 0, 0),
label: "Triangle".into(),
}),
);
// Retrieve metadata
if let Some(data) = poly.metadata() {
println!("This polygon is labeled {}", data.label);
}
// Mutate metadata
if let Some(data_mut) = poly.metadata_mut() {
data_mut.label.push_str("_extended");
}
Patterns we work to follow throughout the library to improve performance and memory usage:
- functions should accept borrowed slices, this permits easy use of iterators
- iterators should be used wherever parallelism may help (and rayon's par_iter)
- allocations should be kept to a minimum. Memory should be read-only if possible, clone if necessary, and offer the choice of transmut in place or create new copy via appropriate functions
- transition sweep, linear_extrude, over to Polygon/Multipolygon native / polygon secondary
- disengage chulls on 2D->3D shapes
- fix shape of reuleaux
- fix metaballs_2d
- fix intersect_cube_sphere, subtract_cube_sphere in main.rs - shapes are out of proximity
- fix up error handling with result types, eliminate panics
- ray intersection (singular)
- expose geo traits on 2D shapes
- https://www.nalgebra.org/docs/user_guide/projections/ for 2d and 3d
- convert more for loops to iterators - csg::transform
- polygons_by_metadata public function of a CSG
- draft implementation done, pending API discussion
- document coordinate system / coordinate transformations / compounded transformations
- produce renders for every function
- determine why flattened_cube.stl produces invalid output with to_stl_binary but not to_stl_ascii
- determine why square_2d_shrink.stl produces invalid output with to_stl_binary but not to_stl_ascii
- determine why square_2d produces invalid output with to_stl_binary but not to_stl_ascii
- bending
- gears
- lead-ins, lead-outs
- gpu accelleration?
- reduce dependency feature sets
- space filling curves, hilbert sort polygons / points
- identify more candidates for par_iter: minkowski, polygon_from_slice, is_manifold
- svg import/export using https://crates.io/crates/geo-svg-io
- http://www.ofitselfso.com/MiscNotes/CAMBamStickFonts.php
- screw threads
- support scale and translation along a vector in rotate extrude
- reimplement 3D offsetting with https://github.com/u65xhd/meshvox or https://docs.rs/parry3d/latest/parry3d/transformation/vhacd/struct.VHACD.html
- reimplement convex hull with https://docs.rs/parry3d-f64/latest/parry3d_f64/transformation/fn.convex_hull.html
- implement 2d/3d convex decomposition with https://docs.rs/parry3d-f64/latest/parry3d_f64/transformation/vhacd/struct.VHACD.html
- reimplement transformations and shapes with https://docs.rs/parry3d/latest/parry3d/transformation/utils/index.html
- std::io::Cursor, std::error::Error - core2 no_std transition
- identify opportunities to use parry2d_f64 and parry3d_f64 modules and functions to simplify and enhance our own
- https://crates.io/crates/polylabel
- pull in https://github.com/fschutt/polylabel-mini/blob/master/src/lib.rs and adjust f64 -> Real
- reduce allocations
- history tree
- STEP/IGES import / export
- curves?
- constraintt solving tree
- test geo_booleanop as alternative to geo's built-in boolean ops.
- adapt cavalier_contours demo application
- rethink metadata
- support storing UV[W] coordinates with vertexes at compile time (try to keep runtime cost low too)
- accomplish equivalence checks and memory usage reduction by using a hashmap or references instead of storing metadata with each node
- with equivalence checks, returning sorted metadata becomes easy
- chamfers
- make algorithm selectable at compile time
- align_x_pos, align_x_neg, align_y_pos, align_y_neg, align_z_pos, align_z_neg, center_x, center_y, center_z,
- attachment points / rapier integration
- attachment is a Vertex (Point + normal)
- attachments Vec in CSG datastructure
- make corners and centers of bb accessible by default, even in empty CSG
- make corners, edge midpoints, and centroids of polygons accessible by default (calculate on demand using an iterator)
- align_to_attachment(name, csg2, name2)
- import functions from https://github.com/nical/lyon/tree/main/crates/geom/src
- implement C FFI using https://rust-lang.github.io/rust-bindgen/
- pull in https://crates.io/crates/geo-uom for units and dimensional analysis
- verify functions against robust predicates here: https://github.com/hayashi-stl/robust-geo/blob/main/src/geo.rs
- https://github.com/u65xhd/meshvox
- https://crates.io/crates/geo-validity-check as compile time option
- https://crates.io/crates/geo-index
- https://github.com/lelongg/geo-rand
- https://github.com/PsichiX/density-mesh
- https://github.com/asny/tri-mesh port
- https://crates.io/crates/flo_curves
- port https://github.com/21re/rust-geo-booleanop to cavalier_contours
- hyperbolic geometry: https://github.com/agerasev/ccgeom/tree/master/src/hyperbolic
- https://crates.io/crates/spherical_geometry
- https://crates.io/crates/miniproj
- examine https://crates.io/crates/geo-aid constraint solver
MIT License
Copyright (c) 2025 Timothy Schmidt
Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
This library initially based on a translation of CSG.js © 2011 Evan Wallace, under the MIT license.
If you find issues, please file an issue or submit a pull request. Feedback and contributions are welcome!
Have fun building geometry in Rust!