Skip to content

Issues with TSMultiLabelClassification #533

Closed
@gitusrnm

Description

Hi and thanks for the great library!

I have some issues with multi-label classification. I used it with my dataset and the training was successful. But I got an error at inference.

I tried it with one sample:
pred = learn.get_X_preds(X = NP.array([X[splits[1]][0]]), bs = 1)

and got:

      python3.8/site-packages/torch/_tensor.py:1051, in Tensor.__torch_function__(cls, func, types, args, kwargs)
         1048     return NotImplemented
         1050 with _C.DisableTorchFunction():
      -> 1051     ret = func(*args, **kwargs)
         1052     if func in get_default_nowrap_functions():
         1053         return ret
      RuntimeError: Boolean value of Tensor with more than one value is ambiguous

I started looking for the problem, and ended up trying to rerun the code from 01a_MultiClass_MultiLabel_TSClassification.ipynb :

from tsai.all import * 

dsid = 'ECG5000' 
X, y, splits = get_UCR_data(dsid, split_data=False)

class_map = {
    '1':['Nor'],          # N:1  - Normal
    '2':['RoT', 'Pre'],   # r:2  - R-on-T premature ventricular contraction
    '3':['PVC', 'Pre'] ,  # V:3  - Premature ventricular contraction
    '4':['SPC', 'Pre'],   # S:4  - Supraventricular premature or ectopic beat (atrial or nodal)
    '5':['Unk'],          # Q:5  - Unclassifiable beat
}
labeler = ReLabeler(class_map)
y_multi = labeler(y)

tfms  = [None, TSMultiLabelClassification()] # TSMultiLabelClassification() == [MultiCategorize(), OneHotEncode()]
batch_tfms = [TSStandardize()]
dls = get_ts_dls(X, y_multi, splits=splits, tfms=tfms, batch_tfms=batch_tfms, bs=[64, 128])

learn = ts_learner(dls, InceptionTimePlus, loss_func=BCEWithLogitsLossFlat(), cbs=[ShowGraph()])
learn.fit_one_cycle(1, lr_max=1e-3)

and got an error:

    python3.8/site-packages/torch/nn/functional.py:2980, in binary_cross_entropy_with_logits(input, target, weight, size_average, reduce, reduction, pos_weight)
       2977     reduction_enum = _Reduction.get_enum(reduction)
       2979 if not (target.size() == input.size()):
    -> 2980     raise ValueError("Target size ({}) must be the same as input size ({})".format(target.size(), input.size()))
       2982 return torch.binary_cross_entropy_with_logits(input, target, weight, pos_weight, reduction_enum)
    ValueError: Target size (torch.Size([384])) must be the same as input size (torch.Size([2304]))

My computer_setup():

os : Linux-5.17.11-200.fc35.x86_64-x86_64-with-glibc2.34
python : 3.8.12
tsai : 0.3.2
fastai : 2.5.6
fastcore : 1.3.27
torch : 1.10.2+cu102
device : cpu
cpu cores : 12
RAM : 15.42 GB
GPU memory : N/A

Activity

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions