forked from hacksider/Deep-Live-Cam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredicter.py
36 lines (26 loc) · 1.18 KB
/
predicter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import numpy
import opennsfw2
from PIL import Image
import cv2 # Add OpenCV import
import modules.globals # Import globals to access the color correction toggle
from modules.typing import Frame
MAX_PROBABILITY = 0.85
# Preload the model once for efficiency
model = None
def predict_frame(target_frame: Frame) -> bool:
# Convert the frame to RGB before processing if color correction is enabled
if modules.globals.color_correction:
target_frame = cv2.cvtColor(target_frame, cv2.COLOR_BGR2RGB)
image = Image.fromarray(target_frame)
image = opennsfw2.preprocess_image(image, opennsfw2.Preprocessing.YAHOO)
global model
if model is None:
model = opennsfw2.make_open_nsfw_model()
views = numpy.expand_dims(image, axis=0)
_, probability = model.predict(views)[0]
return probability > MAX_PROBABILITY
def predict_image(target_path: str) -> bool:
return opennsfw2.predict_image(target_path) > MAX_PROBABILITY
def predict_video(target_path: str) -> bool:
_, probabilities = opennsfw2.predict_video_frames(video_path=target_path, frame_interval=100)
return any(probability > MAX_PROBABILITY for probability in probabilities)