forked from vcadillog/PPO-Mario-Bros-Tensorflow-2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMain.py
193 lines (159 loc) · 7.3 KB
/
Main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
from __future__ import absolute_import, division, print_function, unicode_literals
import numpy as np
import random
import cv2
import tensorflow as tf
import NeuralNets as NN
import PPO
import Datapreprocessing as dpp
import Enviroments as Env
import Common_constants as CC
import MultiEnv as ME
import Auxiliars as AUX
tf.keras.backend.set_floatx('float32')
env = CC.env
obs_shape = CC.obs_shape
num_actions = CC.num_actions
env_name = CC.env_name
start_t = CC.start_t
save_path = CC.save_path
num_actors = CC.num_actors
max_steps = CC.max_steps
base_learning_rate = CC.base_learning_rate
log_dir = CC.log_dir
SMALL_NUM = CC.SMALL_NUM
load_model = CC.load_model
def train(load = True):
writer_sum = tf.summary.create_file_writer(log_dir)
# Global time counter
# At time t, take a_t from s_t, receive r_t.
t = start_t
last_save = 0
actors = []
value_network = NN.value_nn()
policy_network = NN.policy_nn()
if load:
AUX.loader([value_network,policy_network],save_path)
for ii in range(num_actors):
actors.append(ME.EnvActor(ME.SubProcessEnv(env_name)))
while t <= max_steps:
learning_rate = base_learning_rate * ME.alpha_anneal(t)
adam = tf.keras.optimizers.Adam(learning_rate=learning_rate, epsilon=1e-5)
model_grads = PPO.gradients(adam)
for ii in range(horizon):
for actor in actors:
actor.step_env(policy_network,value_network,t)
t += 1
for actor in actors:
actor.calculate_horizon_advantages(t)
# Construct randomly sampled (without replacement) mini-batches.
obs_horizon = []
act_horizon = []
policy_horizon = []
adv_est_horizon = []
val_est_horizon = []
for actor in actors:
obs_a, act_a, policy_a, adv_est_a, val_est_a = actor.get_horizon(t)
obs_horizon.extend(obs_a)
act_horizon.extend(act_a)
policy_horizon.extend(policy_a)
adv_est_horizon.extend(adv_est_a)
val_est_horizon.extend(val_est_a)
# Normalizing advantage estimates.
# NOTE: Adding this significantly improved performance
# NOTE: Moved this out of each individual actor, so that advantages for the whole batch are normalized with each other.
adv_est_horizon = np.array(adv_est_horizon)
adv_est_horizon = (adv_est_horizon - np.mean(adv_est_horizon)) / (np.std(adv_est_horizon) + SMALL_NUM)
num_samples = len(obs_horizon)
indices = list(range(num_samples))
for e in range(optim_epochs):
random.shuffle(indices)
ii = 0
# # TODO: Don't crash if batch_size is not a divisor of total sample count.
while ii < num_samples:
obs_batch = []
act_batch = []
policy_batch = []
adv_batch = []
value_sample_batch = []
for b in range(batch_size):
index = indices[ii]
obs_batch.append(np.squeeze(obs_horizon[index],axis=0))
act_batch.append(act_horizon[index])
policy_batch.append(policy_horizon[index])
adv_batch.append(adv_est_horizon[index])
value_sample_batch.append(val_est_horizon[index])
ii += 1
# Training loop
obs_batch = tf.convert_to_tensor(np.asarray(obs_batch), dtype=tf.float32)
act_batch = tf.convert_to_tensor(np.asarray(act_batch), dtype=tf.uint8)
policy_batch = tf.convert_to_tensor(np.asarray(policy_batch), dtype=tf.float32)
adv_batch = tf.convert_to_tensor(np.asarray(adv_batch), dtype=tf.float32)
value_sample_batch = tf.convert_to_tensor(np.asarray(value_sample_batch), dtype=tf.float32)
#Calling Function of training
entropy_loss, clip_loss, value_loss, total_loss = model_grads(AUX.alpha_anneal(t),
policy_network, value_network,obs_batch,
act_batch,adv_batch,policy_batch,value_sample_batch)
for actor in actors:
actor.flush(t)
if t - last_save > 1000:
AUX.saver([value_network,policy_network],save_path)
last_save = t
all_ep_rewards = []
all_ep_x = []
for actor in actors:
all_ep_rewards.extend(actor.episode_rewards)
all_ep_x.extend(actor.episode_x)
if len(all_ep_rewards) >= 10:
print("T: %d" % (t,))
print("AVG Reward: %f" % (np.mean(all_ep_rewards),))
print("MIN Reward: %f" % (np.amin(all_ep_rewards),))
print("MAX Reward: %f" % (np.amax(all_ep_rewards),))
print("AVG X: %f" % (np.hstack(all_ep_x).mean(),))
print("MIN X: %f" % (np.hstack(all_ep_x).min(),))
print("MAX X: %f" % (np.hstack(all_ep_x).max(),))
AUX.sum_writer(writer_sum,np.mean(all_ep_rewards),t,'Avg_Reward')
AUX.sum_writer(writer_sum,np.hstack(all_ep_x).mean(),t,'Avg_X')
AUX.sum_writer(writer_sum,np.hstack(all_ep_x).max(),t,'Max_X')
for actor in actors:
actor.episode_rewards = []
actor.episode_x = []
# print("Entropy Loss: %f" % (np.mean(entropy_loss),))
# print("Value Loss: %f" % (np.mean(value_loss),))
# print("Clip Loss: %f" % (np.mean(clip_loss),))
# print("Total Loss: %f" % (np.mean(total_loss),))
def test(episodes,env_test):
assert load_model == True
assert env_test >= 0 and env_test<=3
env_test = Env.make_env(env_test)
policy_network = NN.policy_nn()
AUX.loader_test(policy_network,save_path)
done = False
scores = []
for e in range(episodes):
state = env_test.reset()
state = np.expand_dims(state , axis = 0)
state = tf.convert_to_tensor(state, dtype=tf.float32) # for performance
score = 0
video_frames = []
while True:
video_frames.append(cv2.cvtColor(env_test.render(mode = 'rgb_array'), cv2.COLOR_RGB2BGR))
policy_t = policy_network(state).numpy()[0]
action_t = np.argmax(policy_t) # Deterministic action
state,reward,done,_ = env_test.step(action_t)
state = np.expand_dims(state,axis = 0)
state = tf.convert_to_tensor(state, dtype=tf.float32) # for performance
score += reward
if done:
break
video_name = 'test_' + str(e)+'.mp4'
_, height, width, _ = np.shape(video_frames)
fourcc = cv2.VideoWriter_fourcc(*'MP4V')
video = cv2.VideoWriter(video_name, fourcc, 5, (width,height))
for image in video_frames:
video.write(image)
cv2.destroyAllWindows()
video.release()
print('Test #%s , Score: %0.1f' %(e, score))
scores.append(score)
print('Average reward: %0.2f of %s episodes' %(np.mean(scores),episodes))