forked from fengdu78/Coursera-ML-AndrewNg-Notes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path15 - 8 - Anomaly Detection using the Multivariate Gaussian Distribution (Optional) (14 min).srt
1815 lines (1452 loc) · 35.8 KB
/
15 - 8 - Anomaly Detection using the Multivariate Gaussian Distribution (Optional) (14 min).srt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1
00:00:00,330 --> 00:00:01,420
In the last video we talked
在我们谈到的上一个视频(字幕翻译:中国海洋大学 黄海广 haiguang2000@qq.com)
2
00:00:01,750 --> 00:00:03,510
about the Multivariate Gaussian Distribution
关于多元高斯分布
3
00:00:04,720 --> 00:00:06,990
and saw some examples of the
,看到的一些
4
00:00:07,230 --> 00:00:08,830
sorts of distributions you can model, as
建立的各种分布模型,
5
00:00:08,960 --> 00:00:10,880
you vary the parameters, mu and sigma.
当你改变参数,mu和sigma。
6
00:00:11,830 --> 00:00:13,190
In this video, let's take those
在这段视频中,让我们这些
7
00:00:13,420 --> 00:00:14,690
ideas, and apply them
想法,并应用它们
8
00:00:14,890 --> 00:00:17,550
to develop a different anomaly detection algorithm.
制定一个不同的异常检测算法。
9
00:00:19,880 --> 00:00:21,890
To recap the multivariate Gaussian
要回顾一下多元高斯
10
00:00:22,270 --> 00:00:23,080
distribution and the multivariate normal
分布和多元正态分布
11
00:00:23,770 --> 00:00:26,640
distribution has two parameters, mu and sigma.
分布有两个参数,mu和sigma。
12
00:00:27,210 --> 00:00:28,850
Where mu this an n
其中mu这一个n
13
00:00:28,990 --> 00:00:31,110
dimensional vector and sigma,
维向量和sigma,
14
00:00:32,110 --> 00:00:34,430
the covariance matrix, is an
的协方差矩阵,是一种
15
00:00:34,810 --> 00:00:36,110
n by n matrix.
n乘n的矩阵。
16
00:00:37,330 --> 00:00:38,710
And here's the formula for
而这里的公式
17
00:00:38,740 --> 00:00:39,780
the probability of X, as
X的概率,如
18
00:00:40,480 --> 00:00:41,870
parameterized by mu and
按mu和参数化
19
00:00:42,240 --> 00:00:43,770
sigma, and as you
sigma,和你的
20
00:00:43,890 --> 00:00:45,010
vary mu and sigma, you
变量mu和sigma,你
21
00:00:45,100 --> 00:00:45,830
can get a range of different
可以得到一个范围的不同
22
00:00:46,240 --> 00:00:47,700
distributions, like, you know,
分布一样,你知道的,
23
00:00:47,760 --> 00:00:48,990
these are three examples of the
这些都是三个样本
24
00:00:49,060 --> 00:00:50,660
ones that we saw in the previous video.
那些我们在以前的视频看了。
25
00:00:51,800 --> 00:00:53,100
So let's talk about the
因此,让我们谈谈
26
00:00:53,260 --> 00:00:54,600
parameter fitting or the
参数拟合或
27
00:00:54,670 --> 00:00:56,260
parameter estimation problem. The
参数估计问题。该
28
00:00:56,800 --> 00:00:58,480
question, as usual, is if
问题,像往常一样,如果是
29
00:00:58,610 --> 00:00:59,890
I have a set of examples
我有一组样本
30
00:01:00,500 --> 00:01:02,140
X1 through XM and here each
X1到XM并且这里的每个
31
00:01:02,410 --> 00:01:03,750
of these examples is an
这些样本是一个
32
00:01:04,420 --> 00:01:05,820
n dimensional vector and I think my
n维向量,我想我的
33
00:01:06,000 --> 00:01:08,280
examples come from a multivariate Gaussian distribution.
样本来自一个多元高斯分布。
34
00:01:09,470 --> 00:01:12,450
How do I try to estimate my parameters mu and sigma?
我如何尝试估计我的参数mu和sigma?
35
00:01:13,440 --> 00:01:15,070
Well the standard formulas for
以及标准公式的
36
00:01:15,270 --> 00:01:17,170
estimating them is you
估计是:你
37
00:01:17,330 --> 00:01:18,270
set mu to be just
设置mu是
38
00:01:18,580 --> 00:01:19,960
the average of your training examples.
你的训练样本的平均值。
39
00:01:21,010 --> 00:01:22,770
And you set sigma to be equal to this.
并设置sigma等于这一点。
40
00:01:23,130 --> 00:01:24,120
And this is actually just
这其实只是
41
00:01:24,250 --> 00:01:25,200
like the sigma that we had
像我们有sigma
42
00:01:25,490 --> 00:01:26,860
written out, when we were
写出来,当我们
43
00:01:27,150 --> 00:01:28,740
using the PCA or
使用PCA即
44
00:01:28,850 --> 00:01:30,750
the Principal Components Analysis algorithm.
主成分分析算法。
45
00:01:31,820 --> 00:01:32,730
So you just plug in these
所以你只需插入这
46
00:01:32,850 --> 00:01:34,290
two formulas and this
两个公式,这
47
00:01:34,570 --> 00:01:36,720
would give you your estimated parameter
会给你你估计的参数
48
00:01:37,160 --> 00:01:39,440
mu and your estimated parameter sigma.
mu和你估计的参数sigma。
49
00:01:41,580 --> 00:01:43,860
So given the data set here is how you estimate mu and sigma.
所以,这里给出的数据集是你如何估计mu和sigma。
50
00:01:44,270 --> 00:01:45,350
Let's take this method
让我们以这种方法
51
00:01:46,020 --> 00:01:47,410
and just plug it
而只需将其插入
52
00:01:47,610 --> 00:01:49,130
into an anomaly detection algorithm.
到异常检测算法。
53
00:01:50,050 --> 00:01:51,020
So how do we
那么,我们如何
54
00:01:51,080 --> 00:01:52,200
put all of this together to
把所有这一切共同
55
00:01:52,420 --> 00:01:54,160
develop an anomaly detection algorithm?
开发一个异常检测算法?
56
00:01:54,640 --> 00:01:55,780
Here 's what we do.
下面是我们做什么。
57
00:01:56,580 --> 00:01:57,480
First we take our training
首先,我们把我们的训练
58
00:01:57,960 --> 00:01:59,110
set, and we fit the
集,和我们的拟合
59
00:01:59,170 --> 00:02:00,210
model, we fit P
模型,我们计算P
60
00:02:00,390 --> 00:02:01,640
of X, by, you know, setting
的X,要知道,设定
61
00:02:02,100 --> 00:02:02,720
mu and sigma as described
mu和描述的一样sigma
62
00:02:03,780 --> 00:02:05,410
on the previous slide.
在上一张幻灯片。
63
00:02:07,370 --> 00:02:08,510
Next when you are given
您将得到下一个
64
00:02:08,720 --> 00:02:10,170
a new example X. So
一个新的样本X,所以
65
00:02:10,510 --> 00:02:11,430
if you are given a test example,
如果给你一个测试的样本,
66
00:02:12,450 --> 00:02:15,240
lets take an earlier example to have a new example out here.
让作为一个早期的样本有一个新的样本在这里。
67
00:02:15,880 --> 00:02:16,790
And that is my test example.
那是我的测试样本。
68
00:02:18,220 --> 00:02:19,670
Given the new example X, what
鉴于新的样本X,
69
00:02:19,810 --> 00:02:21,220
we are going to do is compute
我们要做的是计算
70
00:02:21,770 --> 00:02:23,420
P of X, using this
p(x),用这
71
00:02:23,690 --> 00:02:26,250
formula for the multivariate Gaussian distribution.
式为多元高斯分布。
72
00:02:27,720 --> 00:02:29,220
And then, if P of
然后,如果p(x)
73
00:02:29,470 --> 00:02:30,840
X is very small, then we
是非常小的,那么我们
74
00:02:30,950 --> 00:02:31,800
flagged it as an anomaly,
把它当作一个异常,
75
00:02:32,440 --> 00:02:33,570
whereas, if P of X is greater
然而,如果p(x)是远大于
76
00:02:33,750 --> 00:02:35,520
than that parameter epsilon, then
参数epsilon,则
77
00:02:35,670 --> 00:02:39,190
we don't flag it as an anomaly.
我们不会将其标记为异常。
78
00:02:39,400 --> 00:02:42,240
So it turns out, if we were to fit a multivariate Gaussian distribution to this data set,
所以,事实证明,如果我们要拟合多元高斯分布到这组数据,
79
00:02:42,560 --> 00:02:44,220
so just the red crosses, not the green example,
所以只是图中的红叉,不是绿的样本,
80
00:02:45,190 --> 00:02:46,100
you end up with a Gaussian
你完成了一个高斯
81
00:02:46,300 --> 00:02:48,080
distribution that places lots
分布的地方很多
82
00:02:48,350 --> 00:02:49,690
of probability in the central
在中央的概率
83
00:02:49,910 --> 00:02:51,840
region, slightly less probability here,
区域,这里概率稍微小,
84
00:02:52,440 --> 00:02:53,360
slightly less probability here,
在这里概率略少,
85
00:02:54,110 --> 00:02:55,010
slightly less probability here,
在这里概率略少,
86
00:02:56,020 --> 00:02:59,280
and very low probability at the point that is way out here.
并在该点是在这里的概率非常低。
87
00:03:01,260 --> 00:03:02,350
And so, if you apply
所以,如果你应用
88
00:03:02,840 --> 00:03:04,730
the multivariate Gaussian distribution to
多元高斯分布
89
00:03:04,920 --> 00:03:06,530
this example, it will actually
本例中,将实际
90
00:03:06,930 --> 00:03:08,610
correctly flag that example.
正确地标记样本。
91
00:03:09,520 --> 00:03:09,920
as an anomaly.
作为一个异常。
92
00:03:16,860 --> 00:03:18,080
Finally it's worth saying
最后,值得一说
93
00:03:18,430 --> 00:03:19,640
a few words about what is
简要描述
94
00:03:19,760 --> 00:03:21,900
the relationship between the
他们之间的关系:
95
00:03:21,950 --> 00:03:23,810
multivariate Gaussian distribution model, and
多元高斯分布模型和
96
00:03:24,030 --> 00:03:25,440
the original model, where we
原始模型,在那里我们
97
00:03:25,500 --> 00:03:26,870
were modeling P(x)
被建模的P
98
00:03:26,940 --> 00:03:28,000
X as a product of this
作为该商品
99
00:03:28,110 --> 00:03:28,890
P of X1, P of X2,
P(X1),P(X2),
100
00:03:29,150 --> 00:03:31,420
up to P of Xn.
到P(Xn)。
101
00:03:32,750 --> 00:03:33,890
It turns out that you can
事实证明,你可以
102
00:03:34,090 --> 00:03:35,310
prove mathematically, I'm not
数学上证明,我不是
103
00:03:35,590 --> 00:03:36,470
going to do the proof here, but
要在这里做了证明,但
104
00:03:36,540 --> 00:03:38,120
you can prove mathematically that this
你能证明在数学上,这
105
00:03:38,300 --> 00:03:40,610
relationship, between the
关系,之间的
106
00:03:40,650 --> 00:03:42,240
multivariate Gaussian model and
多元高斯模型和
107
00:03:42,400 --> 00:03:44,030
this original one. And in
这种原始模型。而且
108
00:03:44,110 --> 00:03:45,420
particular, it turns out
特别是,它原来
109
00:03:45,660 --> 00:03:47,500
that the original model corresponds
原模型对应
110
00:03:48,440 --> 00:03:50,330
to multivariate Gaussians, where
以多变量高斯,其中
111
00:03:50,660 --> 00:03:51,980
the contours of the
的轮廓
112
00:03:52,040 --> 00:03:54,060
Gaussian are always axis aligned.
高斯总是轴线对齐。
113
00:03:55,410 --> 00:03:57,350
So all three of
因此,所有三个
114
00:03:57,470 --> 00:03:59,390
these are examples of
这些样本
115
00:03:59,510 --> 00:04:01,300
Gaussian distributions that you
高斯分布,你
116
00:04:01,480 --> 00:04:02,930
can fit using the original model.
可以适合使用原始模型。
117
00:04:03,190 --> 00:04:04,090
It turns out that that corresponds
原来,对应
118
00:04:05,040 --> 00:04:06,920
to multivariate Gaussian, where, you
以多元高斯,在那里,你
119
00:04:07,300 --> 00:04:09,830
know, the ellipsis here, the contours
知道,这里的省略号,轮廓
120
00:04:10,730 --> 00:04:13,600
of this distribution--it
这种分布的 - 它
121
00:04:13,800 --> 00:04:15,190
turns out that this model actually
事实证明,这种模式实际上
122
00:04:15,470 --> 00:04:17,030
corresponds to a special
对应于一个特殊的
123
00:04:17,490 --> 00:04:19,160
case of a multivariate Gaussian distribution.
情况下的多元高斯分布。
124
00:04:19,740 --> 00:04:21,110
And in particular, this special
特别是,这个特殊的
125
00:04:21,410 --> 00:04:22,930
case is defined by constraining
例子通过约束定义
126
00:04:24,460 --> 00:04:25,710
the distribution of p
p(x)分布
127
00:04:25,880 --> 00:04:27,110
of x, the multivariate a Gaussian
,多元高斯
128
00:04:27,270 --> 00:04:28,070
distribution of p of x,
分布的p(x),
129
00:04:28,980 --> 00:04:30,740
so that the contours of
这个
130
00:04:30,920 --> 00:04:32,340
the probability density function, of
概率密度函数的轮廓,
131
00:04:32,440 --> 00:04:35,010
the probability distribution function, are axis aligned.
这个概率分布函数,是轴对齐。
132
00:04:35,700 --> 00:04:37,400
And so you can get a p
所以你可以得到p(x)
133
00:04:37,940 --> 00:04:39,550
of x with a
是一个
134
00:04:39,860 --> 00:04:41,430
multivariate Gaussian that looks like
多元高斯分布,看起来像
135
00:04:41,630 --> 00:04:43,850
this, or like this, or like this.
这样,或者这样,或者像这样。
136
00:04:44,050 --> 00:04:44,990
And you notice, that in all
而且你注意到,在所有
137
00:04:45,210 --> 00:04:47,820
3 of these examples, these ellipses,
第三个样本中,这些椭圆
138
00:04:48,740 --> 00:04:50,490
or these ovals that I'm drawing, have
或者,这些椭圆形的我画,有
139
00:04:50,690 --> 00:04:53,190
their axes aligned with the X1 X2 axes.
其轴线对准X1 X2轴。
140
00:04:54,260 --> 00:04:55,920
And what we do not have, is
而我们没有,是
141
00:04:56,200 --> 00:04:57,310
a set of contours
一组轮廓
142
00:04:58,050 --> 00:05:00,450
that are at an angle, right?
这是一个角度,对不对?
143
00:05:00,790 --> 00:05:02,620
And this corresponded to examples where
与此相对应的样本在那里
144
00:05:02,790 --> 00:05:06,780
sigma is equal to 1 1, 0.8, 0.8.
sigma等于1 1,0.8,0.8。
145
00:05:06,840 --> 00:05:08,790
Let's say, with non-0 elements on the
比方说,对非0元素
146
00:05:09,070 --> 00:05:10,780
off diagonals.
关闭对角线。
147
00:05:11,180 --> 00:05:11,970
So, it turns out that
所以,事实证明,
148
00:05:12,380 --> 00:05:13,980
it's possible to show mathematically that
它是可能的数学证明
149
00:05:14,260 --> 00:05:16,400
this model actually is the
这种模式实际上是
150
00:05:16,480 --> 00:05:18,300
same as a multivariate Gaussian
同样作为多元高斯
151
00:05:18,750 --> 00:05:20,570
distribution but with a constraint.
分布但有限制。
152
00:05:21,250 --> 00:05:24,400
And the constraint is that the
约束是
153
00:05:24,480 --> 00:05:26,710
covariance matrix sigma must
协方差矩阵sigma必须
154
00:05:27,240 --> 00:05:28,900
have 0's on the off diagonal elements.
有0的对非对角元素。
155
00:05:29,360 --> 00:05:30,830
In particular, the covariance matrix sigma,
特别地,协方差矩阵Σ和
156
00:05:31,240 --> 00:05:32,450
this thing here, it would
这个东西在这里,它会
157
00:05:32,550 --> 00:05:33,940
be sigma squared 1, sigma
被sigma平方1,sigma
158
00:05:34,190 --> 00:05:36,050
squared 2, down to sigma
平方2,下至sigma
159
00:05:36,350 --> 00:05:38,660
squared n, and then
平方N,然后
160
00:05:39,530 --> 00:05:40,550
everything on the off diagonal
一切都在对角线关闭
161
00:05:41,020 --> 00:05:42,210
entries, all of these elements
条目,所有这些元素
162
00:05:43,640 --> 00:05:45,110
above and below the diagonal of the matrix,
上面和下面的对角矩阵,
163
00:05:45,640 --> 00:05:46,850
all of those are going to be zero.
所有这些都将是零。
164
00:05:47,900 --> 00:05:49,380
And in fact if you take
而事实上,如果你拿
165
00:05:49,680 --> 00:05:50,980
these values of sigma, sigma
那些sigma的值,sigma
166
00:05:51,330 --> 00:05:52,280
squared 1, sigma squared 2,
平方1,sigma平方2,
167
00:05:52,320 --> 00:05:53,380
down to sigma squared n,
下降到sigma平方N,
168
00:05:53,930 --> 00:05:56,370
and plug them into here, and
并将其插入在这里,
169
00:05:56,690 --> 00:05:57,640
you know, plug them into this
你知道,将它们插入此
170
00:05:57,760 --> 00:05:59,580
covariance matrix, then the
协方差矩阵,则
171
00:05:59,990 --> 00:06:01,130
two models are actually identical.
两个模型实际上是相同的。
172
00:06:01,630 --> 00:06:02,560
That is, this new model,
也就是说,这种新的模型,
173
00:06:06,210 --> 00:06:07,530
using a multivariate Gaussian distribution,
使用多变量高斯分布,
174
00:06:08,820 --> 00:06:10,340
corresponds exactly to the
完全对应
175
00:06:10,400 --> 00:06:11,510
old model, if the covariance
旧的模式,如果协方差
176
00:06:12,040 --> 00:06:13,700
matrix sigma, has only
矩阵的标准差,只有
177
00:06:14,230 --> 00:06:15,490
0 elements off the diagonals,
0元折对角线,
178
00:06:15,580 --> 00:06:17,700
and in pictures that
并且在图片的
179
00:06:18,180 --> 00:06:19,570
corresponds to having Gaussian distributions,
对应于具有高斯分布,
180
00:06:20,720 --> 00:06:22,260
where the contours of this
其中该轮廓
181
00:06:22,950 --> 00:06:25,620
distribution function are axis aligned.
分布函数轴线对齐。
182
00:06:25,940 --> 00:06:28,500
So you aren't allowed to model the correlations between the diffrent features.
所以你不允许模型的不同特征之间的相关性。
183
00:06:30,990 --> 00:06:32,520
So in that sense the original model
所以在这个意义上的原始模型
184
00:06:33,030 --> 00:06:35,840
is actually a special case of this multivariate Gaussian model.
其实这个多元高斯模型的一个特例。
185
00:06:38,370 --> 00:06:40,370
So when would you use each of these two models?
你什么时候会使用这两类模型?
186
00:06:40,830 --> 00:06:41,750
So when would you the original
所以,当你的原始
187
00:06:42,070 --> 00:06:42,880
model and when would you use
模型,你会用时
188
00:06:43,040 --> 00:06:45,170
the multivariate Gaussian model?
多变量高斯模型?
189
00:06:52,110 --> 00:06:53,670
The original model is probably
原始模型可能是
190
00:06:54,240 --> 00:06:55,840
used somewhat more often,
使用较为频繁,
191
00:06:58,800 --> 00:07:03,160
and whereas the multivariate Gaussian
而多元高斯
192
00:07:03,160 --> 00:07:04,470
distribution is used somewhat
分布用的有点
193
00:07:04,800 --> 00:07:06,670
less but it has the advantage of being
少,但它具有的优势在于
194
00:07:07,000 --> 00:07:08,290
able to capture correlations between features. So
能够捕捉功能之间的相关性。所以
195
00:07:10,490 --> 00:07:11,600
suppose you want to
假设你想
196
00:07:11,770 --> 00:07:13,100
capture anomalies where you
捕捉异常,你
197
00:07:13,210 --> 00:07:14,430
have different features say where
有不同的特征如
198
00:07:14,640 --> 00:07:16,560
features x1, x2 take
特征为x1,x2等
199
00:07:16,790 --> 00:07:19,760
on unusual combinations of values
不同的值的组合。
200
00:07:20,070 --> 00:07:21,320
so in the earlier
因此,在早期的