forked from fengdu78/Coursera-ML-AndrewNg-Notes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1 - 4 - Unsupervised Learning (14 min).srt
2060 lines (1645 loc) · 39.3 KB
/
1 - 4 - Unsupervised Learning (14 min).srt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1
00:00:00,380 --> 00:00:01,550
In this video, we'll talk about
在这段视频中 我们将讨论
(字幕整理:中国海洋大学 黄海广,haiguang2000@qq.com )
2
00:00:01,670 --> 00:00:02,690
the second major type of machine
第二种主要的机器学习问题
3
00:00:03,010 --> 00:00:05,030
learning problem, called Unsupervised Learning.
叫做无监督学习
4
00:00:06,300 --> 00:00:08,500
In the last video, we talked about Supervised Learning.
在上一节视频中 我们已经讲过了监督学习
5
00:00:09,250 --> 00:00:10,700
Back then, recall data sets
回想起上次的数据集
6
00:00:11,020 --> 00:00:12,670
that look like this, where each
每个样本
7
00:00:12,890 --> 00:00:15,150
example was labeled either
都已经被标明为
8
00:00:15,610 --> 00:00:16,900
as a positive or negative example,
正样本或者负样本
9
00:00:17,530 --> 00:00:19,800
whether it was a benign or a malignant tumor.
即良性或恶性肿瘤
10
00:00:20,850 --> 00:00:21,920
So for each example in Supervised
因此 对于监督学习中的每一个样本
11
00:00:22,410 --> 00:00:24,270
Learning, we were told explicitly what
我们已经被清楚地告知了
12
00:00:24,440 --> 00:00:25,760
is the so-called right answer,
什么是所谓的正确答案
13
00:00:26,490 --> 00:00:27,580
whether it's benign or malignant.
即它们是良性还是恶性
14
00:00:28,550 --> 00:00:30,210
In Unsupervised Learning, we're given
在无监督学习中
15
00:00:30,540 --> 00:00:31,720
data that looks different
我们用的数据会和监督学习里的看起来有些不一样
16
00:00:31,950 --> 00:00:32,910
than data that looks like
在无监督学习中
17
00:00:33,190 --> 00:00:34,600
this that doesn't have
没有属性或标签这一概念
18
00:00:34,720 --> 00:00:35,920
any labels or that all
也就是说所有的数据
19
00:00:36,130 --> 00:00:37,460
has the same label or really no labels.
都是一样的 没有区别
20
00:00:39,680 --> 00:00:40,740
So we're given the data set and
所以在无监督学习中 我们只有一个数据集
21
00:00:40,980 --> 00:00:42,460
we're not told what to
没人告诉我们该怎么做
22
00:00:42,560 --> 00:00:43,290
do with it and we're not
我们也不知道
23
00:00:43,640 --> 00:00:44,800
told what each data point is.
每个数据点究竟是什么意思
24
00:00:45,290 --> 00:00:47,190
Instead we're just told, here is a data set.
相反 它只告诉我们 现在有一个数据集
25
00:00:47,870 --> 00:00:49,650
Can you find some structure in the data?
你能在其中找到某种结构吗?
26
00:00:50,480 --> 00:00:51,670
Given this data set, an
对于给定的数据集
27
00:00:52,350 --> 00:00:53,940
Unsupervised Learning algorithm might decide that
无监督学习算法可能判定
28
00:00:54,060 --> 00:00:56,090
the data lives in two different clusters.
该数据集包含两个不同的聚类
29
00:00:56,800 --> 00:00:57,960
And so there's one cluster
你看 这是第一个聚类
30
00:00:59,120 --> 00:00:59,910
and there's a different cluster.
然后这是另一个聚类
31
00:01:01,110 --> 00:01:02,710
And yes, Supervised Learning algorithm may
你猜对了 无监督学习算法
32
00:01:03,040 --> 00:01:05,070
break these data into these two separate clusters.
会把这些数据分成两个不同的聚类
33
00:01:06,410 --> 00:01:08,000
So this is called a clustering algorithm.
所以这就是所谓的聚类算法
34
00:01:08,860 --> 00:01:10,310
And this turns out to be used in many places.
实际上它被用在许多地方
35
00:01:11,930 --> 00:01:13,310
One example where clustering
我们来举一个聚类算法的栗子
36
00:01:13,530 --> 00:01:14,860
is used is in Google
Google 新闻的例子
37
00:01:15,060 --> 00:01:16,160
News and if you have not
如果你还没见过这个页面的话
38
00:01:16,360 --> 00:01:17,320
seen this before, you can actually
你可以到这个URL
39
00:01:18,210 --> 00:01:19,040
go to this URL news.google.com
news.google.com
40
00:01:19,830 --> 00:01:20,460
to take a look.
去看看
41
00:01:21,280 --> 00:01:22,970
What Google News does is everyday
谷歌新闻每天都在干什么呢?
42
00:01:23,480 --> 00:01:24,220
it goes and looks at tens
他们每天会去收集
43
00:01:24,470 --> 00:01:25,430
of thousands or hundreds of
成千上万的
44
00:01:25,720 --> 00:01:26,740
thousands of new stories on the
网络上的新闻
45
00:01:26,800 --> 00:01:29,410
web and it groups them into cohesive news stories.
然后将他们分组 组成一个个新闻专题
46
00:01:30,730 --> 00:01:31,690
For example, let's look here.
比如 让我们来看看这里
47
00:01:33,380 --> 00:01:35,370
The URLs here link
这里的URL链接
48
00:01:35,910 --> 00:01:37,260
to different news stories
连接着不同的
49
00:01:38,010 --> 00:01:40,110
about the BP Oil Well story.
有关BP油井事故的报道
50
00:01:41,300 --> 00:01:42,160
So, let's click on
所以 让我们点击
51
00:01:42,260 --> 00:01:43,090
one of these URL's and we'll
这些URL中的一个
52
00:01:43,550 --> 00:01:44,780
click on one of these URL's.
恩 让我们点一个
53
00:01:45,100 --> 00:01:46,970
What I'll get to is a web page like this.
然后我们会来到这样一个网页
54
00:01:47,210 --> 00:01:48,390
Here's a Wall Street
这是一篇来自华尔街日报的
55
00:01:48,590 --> 00:01:50,180
Journal article about, you know, the BP
有关……你懂的
56
00:01:51,110 --> 00:01:52,530
Oil Well Spill stories of
有关BP油井泄漏事故的报道
57
00:01:52,920 --> 00:01:54,350
"BP Kills Macondo",
标题为《BP杀死了Macondo》
58
00:01:54,590 --> 00:01:55,700
which is a name of the
Macondo 是个地名
59
00:01:55,980 --> 00:01:57,960
spill and if you
就是那个漏油事故的地方
60
00:01:58,020 --> 00:01:59,360
click on a different URL
如果你从这个组里点击一个不同的URL
61
00:02:00,690 --> 00:02:02,500
from that group then you might get the different story.
那么你可能会得到不同的新闻
62
00:02:02,950 --> 00:02:04,760
Here's the CNN story about a
这里是一则CNN的新闻
63
00:02:04,820 --> 00:02:06,090
game, the BP Oil Spill,
是一个有关BP石油泄漏的视频
64
00:02:07,090 --> 00:02:08,180
and if you click on yet
如果你再点击第三个链接
65
00:02:08,740 --> 00:02:10,990
a third link, then you might get a different story.
又会出现不同的新闻
66
00:02:11,440 --> 00:02:13,380
Here's the UK Guardian story
这边是英国卫报的报道
67
00:02:13,940 --> 00:02:15,510
about the BP Oil Spill.
也是关于BP石油泄漏
68
00:02:16,530 --> 00:02:17,790
So what Google News has done
所以 谷歌新闻所做的就是
69
00:02:17,990 --> 00:02:19,440
is look for tens of thousands of
去搜索成千上万条新闻
70
00:02:19,490 --> 00:02:22,170
news stories and automatically cluster them together.
然后自动的将他们聚合在一起
71
00:02:23,030 --> 00:02:24,660
So, the news stories that are all
因此 有关同一主题的
72
00:02:25,080 --> 00:02:27,010
about the same topic get displayed together.
新闻被显示在一起
73
00:02:27,210 --> 00:02:29,170
It turns out that
其实
74
00:02:29,380 --> 00:02:31,020
clustering algorithms and Unsupervised Learning
聚类算法和无监督学习算法
75
00:02:31,530 --> 00:02:33,550
algorithms are used in many other problems as well.
也可以被用于许多其他的问题
76
00:02:35,320 --> 00:02:36,690
Here's one on understanding genomics.
这里我们举个它在基因组学中的应用
77
00:02:38,270 --> 00:02:40,510
Here's an example of DNA microarray data.
下面是一个关于基因芯片的例子
78
00:02:40,990 --> 00:02:42,230
The idea is put
基本的思想是
79
00:02:42,430 --> 00:02:44,360
a group of different individuals and
给定一组不同的个体
80
00:02:44,510 --> 00:02:45,590
for each of them, you measure
对于每个个体
81
00:02:46,100 --> 00:02:48,580
how much they do or do not have a certain gene.
检测它们是否拥有某个特定的基因
82
00:02:49,050 --> 00:02:51,640
Technically you measure how much certain genes are expressed.
也就是说,你要去分析有多少基因显现出来了
83
00:02:52,000 --> 00:02:54,190
So these colors, red, green,
因此 这些颜色 红 绿
84
00:02:54,930 --> 00:02:56,210
gray and so on, they
灰 等等 它们
85
00:02:56,340 --> 00:02:57,500
show the degree to which
展示了这些不同的个体
86
00:02:57,780 --> 00:02:59,440
different individuals do or
是否拥有一个特定基因
87
00:02:59,510 --> 00:03:01,270
do not have a specific gene.
的不同程度
88
00:03:02,500 --> 00:03:03,400
And what you can do is then
然后你所能做的就是
89
00:03:03,610 --> 00:03:05,070
run a clustering algorithm to group
运行一个聚类算法
90
00:03:05,380 --> 00:03:07,140
individuals into different categories
把不同的个体归入不同的类
91
00:03:07,780 --> 00:03:08,810
or into different types of people.
或归为不同类型的人
92
00:03:10,230 --> 00:03:11,660
So this is Unsupervised Learning because
这就是无监督学习
93
00:03:11,930 --> 00:03:14,010
we're not telling the algorithm in advance
我们没有提前告知这个算法
94
00:03:14,590 --> 00:03:15,690
that these are type 1 people,
这些是第一类的人
95
00:03:16,130 --> 00:03:17,420
those are type 2 persons, those
这些是第二类的人
96
00:03:17,560 --> 00:03:18,650
are type 3 persons and so
这些是第三类的人等等
97
00:03:19,610 --> 00:03:22,390
on and instead what were saying is yeah here's a bunch of data.
相反我们只是告诉算法 你看 这儿有一堆数据
98
00:03:23,110 --> 00:03:24,030
I don't know what's in this data.
我不知道这个数据是什么东东
99
00:03:24,750 --> 00:03:25,870
I don't know who's and what type.
我不知道里面都有些什么类型 叫什么名字
100
00:03:26,150 --> 00:03:26,940
I don't even know what the different
我甚至不知道都有哪些类型
101
00:03:27,260 --> 00:03:28,480
types of people are, but can
但是
102
00:03:28,610 --> 00:03:30,210
you automatically find structure in
请问你可以自动的找到这些数据中的类型吗?
103
00:03:30,360 --> 00:03:31,260
the data from the you automatically
然后自动的
104
00:03:32,180 --> 00:03:33,620
cluster the individuals into these types
按得到的类型把这些个体分类
105
00:03:33,870 --> 00:03:35,490
that I don't know in advance?
虽然事先我并不知道哪些类型
106
00:03:35,890 --> 00:03:37,610
Because we're not giving the algorithm
因为对于这些数据样本来说
107
00:03:38,160 --> 00:03:40,140
the right answer for the
我们没有给算法一个
108
00:03:40,370 --> 00:03:41,270
examples in my data
正确答案
109
00:03:41,590 --> 00:03:43,090
set, this is Unsupervised Learning.
所以 这就是无监督学习
110
00:03:44,290 --> 00:03:47,040
Unsupervised Learning or clustering is used for a bunch of other applications.
无监督学习或聚类算法在其他领域也有着大量的应用
111
00:03:48,340 --> 00:03:50,340
It's used to organize large computer clusters.
它被用来组织大型的计算机集群
112
00:03:51,390 --> 00:03:52,530
I had some friends looking at
我有一些朋友在管理
113
00:03:52,680 --> 00:03:53,970
large data centers, that is
大型数据中心 也就是
114
00:03:54,180 --> 00:03:55,970
large computer clusters and trying
大型计算机集群 并试图
115
00:03:56,230 --> 00:03:57,470
to figure out which machines tend to
找出哪些机器趋向于
116
00:03:57,590 --> 00:03:59,130
work together and if
协同工作
117
00:03:59,200 --> 00:04:00,270
you can put those machines together,
如果你把这些机器放在一起
118
00:04:01,100 --> 00:04:03,220
you can make your data center work more efficiently.
你就可以让你的数据中心更高效地工作
119
00:04:04,810 --> 00:04:06,820
This second application is on social network analysis.
第二种应用是用于社交网络的分析
120
00:04:07,890 --> 00:04:09,230
So given knowledge about which friends
所以 如果可以得知
121
00:04:09,630 --> 00:04:10,840
you email the most or
哪些朋友你用email联系的最多
122
00:04:10,880 --> 00:04:12,150
given your Facebook friends or
或者知道你的Facebook好友
123
00:04:12,180 --> 00:04:14,150
your Google+ circles, can
或者你Google+里的朋友
124
00:04:14,290 --> 00:04:16,380
we automatically identify which are
知道了这些之后
125
00:04:16,450 --> 00:04:17,950
cohesive groups of friends,
我们是否可以自动识别
126
00:04:18,460 --> 00:04:19,420
also which are groups of people
哪些是很要好的朋友组
127
00:04:20,230 --> 00:04:21,010
that all know each other?
哪些仅仅是互相认识的朋友组
128
00:04:22,540 --> 00:04:22,880
Market segmentation.
还有在市场分割中的应用
129
00:04:24,680 --> 00:04:26,780
Many companies have huge databases of customer information.
许多公司拥有庞大的客户信息数据库
130
00:04:27,700 --> 00:04:28,410
So, can you look at this
那么 给你一个
131
00:04:28,510 --> 00:04:30,000
customer data set and automatically
客户数据集 你能否
132
00:04:30,740 --> 00:04:32,340
discover market segments and automatically
自动找出不同的市场分割
133
00:04:33,340 --> 00:04:35,290
group your customers into different
并自动将你的客户分到不同的
134
00:04:35,820 --> 00:04:37,400
market segments so that
细分市场中
135
00:04:37,710 --> 00:04:39,490
you can automatically and more
从而有助于我在
136
00:04:39,650 --> 00:04:41,580
efficiently sell or market
不同的细分市场中
137
00:04:41,890 --> 00:04:43,250
your different market segments together?
进行更有效的销售
138
00:04:44,260 --> 00:04:45,580
Again, this is Unsupervised Learning
这也是无监督学习
139
00:04:45,820 --> 00:04:46,720
because we have all this
我们现在有
140
00:04:46,900 --> 00:04:48,340
customer data, but we don't
这些客户数据
141
00:04:48,590 --> 00:04:49,710
know in advance what are the
但我们预先并不知道
142
00:04:49,790 --> 00:04:51,270
market segments and for
有哪些细分市场
143
00:04:51,440 --> 00:04:52,570
the customers in our data
而且
144
00:04:52,660 --> 00:04:53,590
set, you know, we don't know in
对于我们数据集的某个客户
145
00:04:53,690 --> 00:04:54,700
advance who is in
我们也不能预先知道
146
00:04:54,800 --> 00:04:55,840
market segment one, who is
谁属于细分市场一
147
00:04:55,940 --> 00:04:57,800
in market segment two, and so on.
谁又属于细分市场二等等
148
00:04:57,930 --> 00:05:00,630
But we have to let the algorithm discover all this just from the data.
但我们必须让这个算法自己去从数据中发现这一切
149
00:05:01,970 --> 00:05:03,140
Finally, it turns out that Unsupervised
最后
150
00:05:03,690 --> 00:05:05,620
Learning is also used for
事实上无监督学习也被用于
151
00:05:06,090 --> 00:05:08,060
surprisingly astronomical data analysis
天文数据分析
152
00:05:08,890 --> 00:05:10,390
and these clustering algorithms gives
通过这些聚类算法 我们发现了许多
153
00:05:10,580 --> 00:05:12,440
surprisingly interesting useful theories
惊人的、有趣的 以及实用的
154
00:05:12,900 --> 00:05:15,610
of how galaxies are born.
关于星系是如何诞生的理论
155
00:05:15,880 --> 00:05:17,620
All of these are examples of clustering,
所有这些都是聚类算法的例子
156
00:05:18,400 --> 00:05:20,550
which is just one type of Unsupervised Learning.
而聚类只是无监督学习的一种
157
00:05:21,530 --> 00:05:22,470
Let me tell you about another one.
现在让我来告诉你另一种
158
00:05:23,200 --> 00:05:25,020
I'm gonna tell you about the cocktail party problem.
我先来介绍一下鸡尾酒宴问题
159
00:05:26,310 --> 00:05:28,270
So, you've been to cocktail parties before, right?
恩 我想你参加过鸡尾酒会的 是吧?
160
00:05:28,440 --> 00:05:30,080
Well, you can imagine there's a
嗯 想象一下
161
00:05:30,300 --> 00:05:31,690
party, room full of people, all
有一个宴会 有一屋子的人
162
00:05:31,870 --> 00:05:32,930
sitting around, all talking at the
大家都坐在一起
163
00:05:32,970 --> 00:05:34,390
same time and there are
而且在同时说话
164
00:05:34,480 --> 00:05:36,230
all these overlapping voices because everyone
有许多声音混杂在一起
165
00:05:36,590 --> 00:05:37,920
is talking at the same time, and
因为每个人都是在同一时间说话的
166
00:05:38,070 --> 00:05:39,730
it is almost hard to hear the person in front of you.
在这种情况下你很难听清楚你面前的人说的话
167
00:05:40,690 --> 00:05:41,970
So maybe at a
因此 比如有这样一个场景
168
00:05:42,020 --> 00:05:43,990
cocktail party with two people,
宴会上只有两个人
169
00:05:45,690 --> 00:05:46,670
two people talking at the same
两个人
170
00:05:46,770 --> 00:05:48,090
time, and it's a somewhat
同时说话
171
00:05:48,740 --> 00:05:49,710
small cocktail party.
恩 这是个很小的鸡尾酒宴会
172
00:05:50,690 --> 00:05:51,630
And we're going to put two
我们准备好了两个麦克风
173
00:05:51,890 --> 00:05:53,080
microphones in the room so
把它们放在房间里
174
00:05:54,060 --> 00:05:55,640
there are microphones, and because
然后
175
00:05:56,050 --> 00:05:57,430
these microphones are at two
因为这两个麦克风距离这两个人
176
00:05:57,560 --> 00:05:58,900
different distances from the
的距离是不同的
177
00:05:58,990 --> 00:06:01,250
speakers, each microphone records
每个麦克风都记录下了
178
00:06:01,830 --> 00:06:04,720
a different combination of these two speaker voices.
来自两个人的声音的不同组合
179
00:06:05,810 --> 00:06:06,970
Maybe speaker one is a
也许A的声音
180
00:06:07,120 --> 00:06:08,320
little louder in microphone one
在第一个麦克风里的声音会响一点
181
00:06:09,120 --> 00:06:10,680
and maybe speaker two is a
也许B的声音
182
00:06:10,800 --> 00:06:12,350
little bit louder on microphone 2
在第二个麦克风里会比较响一些
183
00:06:12,560 --> 00:06:14,040
because the 2 microphones are
因为2个麦克风
184
00:06:14,230 --> 00:06:15,950
at different positions relative to
的位置相对于
185
00:06:16,400 --> 00:06:19,020
the 2 speakers, but each
2个说话者的位置是不同的
186
00:06:19,250 --> 00:06:20,390
microphone would cause an overlapping
但每个麦克风都会录到
187
00:06:20,970 --> 00:06:22,590
combination of both speakers' voices.
来自两个说话者的重叠部分的声音
188
00:06:23,960 --> 00:06:25,500
So here's an actual recording
这里有一个
189
00:06:26,520 --> 00:06:29,280
of two speakers recorded by a researcher.
来自一个研究员录下的两个说话者的声音
190
00:06:29,740 --> 00:06:30,950
Let me play for you the
让我先放给你听第一个
191
00:06:31,060 --> 00:06:32,760
first, what the first microphone sounds like.
这是第一个麦克风录到的录音:
192
00:06:33,560 --> 00:06:34,800
One (uno), two (dos),
一 (UNO) 二 (DOS)
193
00:06:35,070 --> 00:06:36,590
three (tres), four (cuatro), five
三 (TRES) 四 (CUATRO) 五 (CINCO)
194
00:06:37,060 --> 00:06:38,550
(cinco), six (seis), seven (siete),
六 (SEIS) 七 (SIETE)
195
00:06:38,990 --> 00:06:40,610
eight (ocho), nine (nueve), ten (y diez).
八 (ocho) 九 (NUEVE) 十 (Y DIEZ)
196
00:06:41,610 --> 00:06:42,650
All right, maybe not the most interesting cocktail
好吧 这大概不是什么有趣的酒会……
197
00:06:43,000 --> 00:06:44,270
party, there's two people
……在这个酒会上 有两个人
198
00:06:44,620 --> 00:06:45,670
counting from one to ten
各自从1数到10
199
00:06:46,010 --> 00:06:47,880
in two languages but you know.
但用的是两种不同语言