Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Binomial MARS model returns Gaussian coefficients when parsed in tidypredict_fit() and tidypredict_sql() #97

Open
brettefaw opened this issue May 4, 2021 · 0 comments

Comments

@brettefaw
Copy link

brettefaw commented May 4, 2021

It appears that tidypredict_fit() and tidypredict_sql() are returned a parsed model that has the Gaussian coefficients instead of the Binomial coefficients when a MARS model is fit using the earth package. The example below was done using R version 4.0.2, tidypredict_0.4.8 and earth_5.3.0. A comparison to parsed models using glm() is also included for reference.

library(earth)
library(tidyverse)
library(tidypredict)
data("etitanic", package = "earth")

MARS w/ Binomial

mars.mod.1 <- 
  earth(
    survived ~ age + sex,
    data = etitanic,
    glm = list(family = binomial)
  )
coef(mars.mod.1)

#> (Intercept) sexmale h(9-age)
#> 1.0499562 -2.4754699 0.1692326

MARS w/ Gaussian

mars.mod.2 <-
  earth(
    survived ~ age + sex,
    data = etitanic,
    glm = list(family = gaussian)
  )
coef(mars.mod.2)

#> (Intercept) sexmale h(9-age)
#> 0.73782144 -0.54239536 0.02975461
The parsed model w/ binomial returns the Gaussian model coefficients with the Sigmoid function applied

tidypredict_fit(mars.mod.1)

#> 1 - 1/(1 + exp(0.737821439264803 + (ifelse(age < 9, 9 - age,
#> 0) * 0.0297546135084789) + (ifelse(sex == "male", 1, 0) *
#> -0.542395361228247)))

tidypredict_fit(mars.mod.2)

#> 0.737821439264803 + (ifelse(age < 9, 9 - age, 0) * 0.0297546135084789) +
#> (ifelse(sex == "male", 1, 0) * -0.542395361228247)
Compare tidypredict with predict (fit and pred columns are not the same)

etitanic %>%
  tidypredict_to_column(mars.mod.1) %>%
  mutate(pred = predict(mars.mod.1, type = "response")[,1]) %>%
  head(10) 

#> pclass survived sex age sibsp parch fit pred
#> 1 1st 1 female 29.0000 0 0 0.6765193 0.7407665
#> 2 1st 1 male 0.9167 1 2 0.6072916 0.4856151
#> 3 1st 0 female 2.0000 1 2 0.7203309 0.9033125
#> 4 1st 0 male 30.0000 1 2 0.5487016 0.1937987
#> 5 1st 0 female 25.0000 1 2 0.6765193 0.7407665
#> 6 1st 1 male 48.0000 0 0 0.5487016 0.1937987
#> 7 1st 1 female 63.0000 1 0 0.6765193 0.7407665
#> 8 1st 0 male 39.0000 0 0 0.5487016 0.1937987
#> 9 1st 1 female 53.0000 2 0 0.6765193 0.7407665
#> 10 1st 0 male 71.0000 0 0 0.5487016 0.1937987

Contrast with GLM

GLM w/ binomial

glm.mod.1 <-
  glm(
    survived ~ age + sex,
    data = etitanic,
    family = binomial
  )
coef(glm.mod.1)

#> (Intercept) age sexmale
#> 1.235414162 -0.004254246 -2.460689180

GLM w/ Gaussian

glm.mod.2 <-
  glm(
    survived ~ age + sex,
    data = etitanic,
    family = gaussian
  )
coef(glm.mod.2)

#> (Intercept) age sexmale
#> 0.7734801846 -0.0007286511 -0.5460270483
Coefficients match GLM model 1 above

tidypredict_fit(glm.mod.1)

#> 1 - 1/(1 + exp(1.23541416209053 + (age * -0.00425424604207735) +
#> (ifelse(sex == "male", 1, 0) * -2.46068918004127)))
Coefficients match GLM model 2 above

tidypredict_fit(glm.mod.2) 

#> 0.773480184644955 + (age * -0.000728651082406954) + (ifelse(sex ==
#> "male", 1, 0) * -0.546027048277061)
Compare predictions (fit and pred match)

etitanic %>%
  tidypredict_to_column(glm.mod.1) %>%
  mutate(pred = predict(glm.mod.1, type = "response")) %>%
  head(10)

#> pclass survived sex age sibsp parch fit pred
#> 1 1st 1 female 29.0000 0 0 0.7525094 0.7525094
#> 2 1st 1 male 0.9167 1 2 0.2263259 0.2263259
#> 3 1st 0 female 2.0000 1 2 0.7732765 0.7732765
#> 4 1st 0 male 30.0000 1 2 0.2053963 0.2053963
#> 5 1st 0 female 25.0000 1 2 0.7556650 0.7556650
#> 6 1st 1 male 48.0000 0 0 0.1931799 0.1931799
#> 7 1st 1 female 63.0000 1 0 0.7246003 0.7246003
#> 8 1st 0 male 39.0000 0 0 0.1992178 0.1992178
#> 9 1st 1 female 53.0000 2 0 0.7330082 0.7330082
#> 10 1st 0 male 71.0000 0 0 0.1783852 0.1783852

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant