|
504 | 504 | translate_args(basic %>% set_engine("glmnet"))
|
505 | 505 | Condition
|
506 | 506 | Error in `.check_glmnet_penalty_fit()`:
|
507 |
| - ! For the glmnet engine, `penalty` must be a single number (or a value of `tune()`). |
508 |
| - * There are 0 values for `penalty`. |
509 |
| - * To try multiple values for total regularization, use the tune package. |
510 |
| - * To predict multiple penalties, use `multi_predict()` |
| 507 | + x For the glmnet engine, `penalty` must be a single number (or a value of `tune()`). |
| 508 | + ! There are 0 values for `penalty`. |
| 509 | + i To try multiple values for total regularization, use the tune package. |
| 510 | + i To predict multiple penalties, use `multi_predict()`. |
511 | 511 |
|
512 | 512 | ---
|
513 | 513 |
|
|
555 | 555 | translate_args(mixture %>% set_engine("glmnet"))
|
556 | 556 | Condition
|
557 | 557 | Error in `.check_glmnet_penalty_fit()`:
|
558 |
| - ! For the glmnet engine, `penalty` must be a single number (or a value of `tune()`). |
559 |
| - * There are 0 values for `penalty`. |
560 |
| - * To try multiple values for total regularization, use the tune package. |
561 |
| - * To predict multiple penalties, use `multi_predict()` |
| 558 | + x For the glmnet engine, `penalty` must be a single number (or a value of `tune()`). |
| 559 | + ! There are 0 values for `penalty`. |
| 560 | + i To try multiple values for total regularization, use the tune package. |
| 561 | + i To predict multiple penalties, use `multi_predict()`. |
562 | 562 |
|
563 | 563 | ---
|
564 | 564 |
|
|
688 | 688 | translate_args(basic %>% set_engine("glmnet"))
|
689 | 689 | Condition
|
690 | 690 | Error in `.check_glmnet_penalty_fit()`:
|
691 |
| - ! For the glmnet engine, `penalty` must be a single number (or a value of `tune()`). |
692 |
| - * There are 0 values for `penalty`. |
693 |
| - * To try multiple values for total regularization, use the tune package. |
694 |
| - * To predict multiple penalties, use `multi_predict()` |
| 691 | + x For the glmnet engine, `penalty` must be a single number (or a value of `tune()`). |
| 692 | + ! There are 0 values for `penalty`. |
| 693 | + i To try multiple values for total regularization, use the tune package. |
| 694 | + i To predict multiple penalties, use `multi_predict()`. |
695 | 695 |
|
696 | 696 | ---
|
697 | 697 |
|
|
827 | 827 | translate_args(mixture %>% set_engine("glmnet"))
|
828 | 828 | Condition
|
829 | 829 | Error in `.check_glmnet_penalty_fit()`:
|
830 |
| - ! For the glmnet engine, `penalty` must be a single number (or a value of `tune()`). |
831 |
| - * There are 0 values for `penalty`. |
832 |
| - * To try multiple values for total regularization, use the tune package. |
833 |
| - * To predict multiple penalties, use `multi_predict()` |
| 830 | + x For the glmnet engine, `penalty` must be a single number (or a value of `tune()`). |
| 831 | + ! There are 0 values for `penalty`. |
| 832 | + i To try multiple values for total regularization, use the tune package. |
| 833 | + i To predict multiple penalties, use `multi_predict()`. |
834 | 834 |
|
835 | 835 | ---
|
836 | 836 |
|
|
968 | 968 | translate_args(mixture_v %>% set_engine("glmnet"))
|
969 | 969 | Condition
|
970 | 970 | Error in `.check_glmnet_penalty_fit()`:
|
971 |
| - ! For the glmnet engine, `penalty` must be a single number (or a value of `tune()`). |
972 |
| - * There are 0 values for `penalty`. |
973 |
| - * To try multiple values for total regularization, use the tune package. |
974 |
| - * To predict multiple penalties, use `multi_predict()` |
| 971 | + x For the glmnet engine, `penalty` must be a single number (or a value of `tune()`). |
| 972 | + ! There are 0 values for `penalty`. |
| 973 | + i To try multiple values for total regularization, use the tune package. |
| 974 | + i To predict multiple penalties, use `multi_predict()`. |
975 | 975 |
|
976 | 976 | ---
|
977 | 977 |
|
|
1334 | 1334 | translate_args(basic %>% set_engine("glmnet"))
|
1335 | 1335 | Condition
|
1336 | 1336 | Error in `.check_glmnet_penalty_fit()`:
|
1337 |
| - ! For the glmnet engine, `penalty` must be a single number (or a value of `tune()`). |
1338 |
| - * There are 0 values for `penalty`. |
1339 |
| - * To try multiple values for total regularization, use the tune package. |
1340 |
| - * To predict multiple penalties, use `multi_predict()` |
| 1337 | + x For the glmnet engine, `penalty` must be a single number (or a value of `tune()`). |
| 1338 | + ! There are 0 values for `penalty`. |
| 1339 | + i To try multiple values for total regularization, use the tune package. |
| 1340 | + i To predict multiple penalties, use `multi_predict()`. |
1341 | 1341 |
|
1342 | 1342 | ---
|
1343 | 1343 |
|
|
1552 | 1552 | basic_incomplete %>% translate_args()
|
1553 | 1553 | Condition
|
1554 | 1554 | Error in `.check_glmnet_penalty_fit()`:
|
1555 |
| - ! For the glmnet engine, `penalty` must be a single number (or a value of `tune()`). |
1556 |
| - * There are 0 values for `penalty`. |
1557 |
| - * To try multiple values for total regularization, use the tune package. |
1558 |
| - * To predict multiple penalties, use `multi_predict()` |
| 1555 | + x For the glmnet engine, `penalty` must be a single number (or a value of `tune()`). |
| 1556 | + ! There are 0 values for `penalty`. |
| 1557 | + i To try multiple values for total regularization, use the tune package. |
| 1558 | + i To predict multiple penalties, use `multi_predict()`. |
1559 | 1559 |
|
1560 | 1560 | # arguments (rand_forest)
|
1561 | 1561 |
|
|
0 commit comments