|
| 1 | +library(testthat) |
| 2 | +library(parsnip) |
| 3 | + |
| 4 | + |
| 5 | +test_that('primary arguments', { |
| 6 | + basic <- logistic_reg() |
| 7 | + basic_glm <- finalize(basic, engine = "glm") |
| 8 | + basic_glmnet <- finalize(basic, engine = "glmnet") |
| 9 | + basic_stan <- finalize(basic, engine = "stan_glm") |
| 10 | + expect_equal(basic_glm$method$fit, |
| 11 | + quote( |
| 12 | + glm( |
| 13 | + formula = formula, |
| 14 | + family = binomial(), |
| 15 | + data = data, |
| 16 | + weights = NULL |
| 17 | + ) |
| 18 | + ) |
| 19 | + ) |
| 20 | + expect_equal(basic_glmnet$method$fit, |
| 21 | + quote( |
| 22 | + glmnet( |
| 23 | + x = as.matrix(x), |
| 24 | + y = y, |
| 25 | + family = "binomial" |
| 26 | + ) |
| 27 | + ) |
| 28 | + ) |
| 29 | + expect_equal(basic_stan$method$fit, |
| 30 | + quote( |
| 31 | + stan_glm( |
| 32 | + formula = formula, |
| 33 | + family = binomial(), |
| 34 | + data = data, |
| 35 | + weights = NULL |
| 36 | + ) |
| 37 | + ) |
| 38 | + ) |
| 39 | + |
| 40 | + mixture <- logistic_reg(mixture = 0.128) |
| 41 | + mixture_glmnet <- finalize(mixture, engine = "glmnet") |
| 42 | + expect_equal(mixture_glmnet$method$fit, |
| 43 | + quote( |
| 44 | + glmnet( |
| 45 | + x = as.matrix(x), |
| 46 | + y = y, |
| 47 | + family = "binomial", |
| 48 | + alpha = 0.128 |
| 49 | + ) |
| 50 | + ) |
| 51 | + ) |
| 52 | + |
| 53 | + regularization <- logistic_reg(regularization = 1) |
| 54 | + regularization_glmnet <- finalize(regularization, engine = "glmnet") |
| 55 | + expect_equal(regularization_glmnet$method$fit, |
| 56 | + quote( |
| 57 | + glmnet( |
| 58 | + x = as.matrix(x), |
| 59 | + y = y, |
| 60 | + family = "binomial", |
| 61 | + lambda = 1 |
| 62 | + ) |
| 63 | + ) |
| 64 | + ) |
| 65 | + |
| 66 | + mixture_v <- logistic_reg(mixture = varying()) |
| 67 | + mixture_v_glmnet <- finalize(mixture_v, engine = "glmnet") |
| 68 | + expect_equal(mixture_v_glmnet$method$fit, |
| 69 | + quote( |
| 70 | + glmnet( |
| 71 | + x = as.matrix(x), |
| 72 | + y = y, |
| 73 | + family = "binomial", |
| 74 | + alpha = varying() |
| 75 | + ) |
| 76 | + ) |
| 77 | + ) |
| 78 | +}) |
| 79 | + |
| 80 | +test_that('engine arguments', { |
| 81 | + glm_fam <- logistic_reg(engine_args = list(family = binomial(link = "probit"))) |
| 82 | + expect_equal(finalize(glm_fam, engine = "glm")$method$fit, |
| 83 | + quote( |
| 84 | + glm( |
| 85 | + formula = formula, |
| 86 | + family = binomial(link = "probit"), |
| 87 | + data = data, |
| 88 | + weights = NULL |
| 89 | + ) |
| 90 | + ) |
| 91 | + ) |
| 92 | + |
| 93 | + glmnet_nlam <- logistic_reg(engine_args = list(nlambda = 10)) |
| 94 | + expect_equal(finalize(glmnet_nlam, engine = "glmnet")$method$fit, |
| 95 | + quote( |
| 96 | + glmnet( |
| 97 | + x = as.matrix(x), |
| 98 | + y = y, |
| 99 | + family = "binomial", |
| 100 | + nlambda = 10 |
| 101 | + ) |
| 102 | + ) |
| 103 | + ) |
| 104 | + |
| 105 | + # these should get pass into the ... slot |
| 106 | + stan_samp <- logistic_reg(engine_args = list(chains = 1, iter = 5)) |
| 107 | + expect_equal(finalize(stan_samp, engine = "stan_glm")$method$fit, |
| 108 | + quote( |
| 109 | + stan_glm( |
| 110 | + formula = formula, |
| 111 | + family = binomial(), |
| 112 | + data = data, |
| 113 | + weights = NULL, |
| 114 | + chains = 1, |
| 115 | + iter = 5 |
| 116 | + ) |
| 117 | + ) |
| 118 | + ) |
| 119 | + |
| 120 | +}) |
| 121 | + |
| 122 | + |
| 123 | +test_that('updating', { |
| 124 | + expr1 <- logistic_reg( engine_args = list(family = binomial(link = "probit"))) |
| 125 | + expr1_exp <- logistic_reg(mixture = 0, engine_args = list(family = binomial(link = "probit"))) |
| 126 | + |
| 127 | + expr2 <- logistic_reg(mixture = varying()) |
| 128 | + expr2_exp <- logistic_reg(mixture = varying(), engine_args = list(nlambda = 10)) |
| 129 | + |
| 130 | + expr3 <- logistic_reg(mixture = 0, regularization = varying()) |
| 131 | + expr3_exp <- logistic_reg(mixture = 1) |
| 132 | + |
| 133 | + expr4 <- logistic_reg(mixture = 0, engine_args = list(nlambda = 10)) |
| 134 | + expr4_exp <- logistic_reg(mixture = 0, engine_args = list(nlambda = 10, pmax = 2)) |
| 135 | + |
| 136 | + expr5 <- logistic_reg(mixture = 1, engine_args = list(nlambda = 10)) |
| 137 | + expr5_exp <- logistic_reg(mixture = 1, engine_args = list(nlambda = 10, pmax = 2)) |
| 138 | + |
| 139 | + expect_equal(update(expr1, mixture = 0), expr1_exp) |
| 140 | + expect_equal(update(expr2, engine_args = list(nlambda = 10)), expr2_exp) |
| 141 | + expect_equal(update(expr3, mixture = 1, fresh = TRUE), expr3_exp) |
| 142 | + expect_equal(update(expr4, engine_args = list(pmax = 2)), expr4_exp) |
| 143 | + expect_equal(update(expr5, engine_args = list(nlambda = 10, pmax = 2)), expr5_exp) |
| 144 | + |
| 145 | +}) |
| 146 | + |
| 147 | +test_that('bad input', { |
| 148 | + expect_error(logistic_reg(ase.weights = var)) |
| 149 | + expect_error(logistic_reg(mode = "regression")) |
| 150 | + expect_error(finalize(logistic_reg(), engine = "wat?")) |
| 151 | + expect_warning(finalize(logistic_reg(), engine = NULL)) |
| 152 | + expect_error(finalize(logistic_reg(engine_args = list(ytest = 2)), engine = "glmnet")) |
| 153 | + expect_error(finalize(logistic_reg(formula = y ~ x))) |
| 154 | + expect_warning(finalize(logistic_reg(engine_args = list(x = x, y = y)), engine = "glmnet")) |
| 155 | + expect_warning(finalize(logistic_reg(engine_args = list(formula = y ~ x)), engine = "glm")) |
| 156 | +}) |
| 157 | + |
| 158 | + |
0 commit comments