-
Notifications
You must be signed in to change notification settings - Fork 3
/
save_gan_models.py
397 lines (348 loc) · 19.1 KB
/
save_gan_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
import numpy as np
import tensorflow as tf
import tensorflow_probability as tfp
import argparse
import cit_gan
import gan_utils
tf.random.set_seed(42)
np.random.seed(42)
#
# The generate_samples_random function and rdc function were inspired by
# GCIT Github repository by Alexis Bellot1,2 Mihaela van der Schaar
# source: https://github.com/alexisbellot/GCIT
#
def generate_samples_random(size=1000, sType='CI', dx=1, dy=1, dz=20, nstd=0.05, alpha_x=0.05,
normalize=True, seed=None, dist_z='gaussian'):
'''
Generate CI,I or NI post-nonlinear samples
1. Z is independent Gaussian or Laplace
2. X = f1(<a,Z> + b + noise) and Y = f2(<c,Z> + d + noise) in case of CI
Arguments:
size : number of samples
sType: CI, I, or NI
dx: Dimension of X
dy: Dimension of Y
dz: Dimension of Z
nstd: noise standard deviation
we set f1 to be sin function and f2 to be cos function.
Output:
Samples X, Y, Z
'''
if seed is None:
np.random.seed()
else:
np.random.seed(seed)
num = size
if dist_z == 'gaussian':
cov = np.eye(dz)
mu = np.zeros(dz)
Z = np.random.multivariate_normal(mu, cov, num)
elif dist_z == 'laplace':
Z = np.random.laplace(loc=0.0, scale=1.0, size=num*dz)
Z = np.reshape(Z, (num, dz))
Ax = np.random.rand(dz, dx)
for i in range(dx):
Ax[:, i] = Ax[:, i] / np.linalg.norm(Ax[:, i], ord=1)
Ay = np.random.rand(dz, dy)
for i in range(dy):
Ay[:, i] = Ay[:, i] / np.linalg.norm(Ay[:, i], ord=1)
Axy = np.ones((dx, dy)) * alpha_x
if sType == 'CI':
X = np.sin(np.matmul(Z, Ax) + nstd * np.random.multivariate_normal(np.zeros(dx), np.eye(dx), num))
# X = np.random.multivariate_normal(np.zeros(dx), np.eye(dx), num) + np.matmul(Z, Ax)
# X = np.random.uniform(-1.0, 1.0, size=(size, 1))
Y = np.cos(np.matmul(Z, Ay) + nstd * np.random.multivariate_normal(np.zeros(dy), np.eye(dy), num))
elif sType == 'I':
X = np.sin(nstd * np.random.multivariate_normal(np.zeros(dx), np.eye(dx), num))
Y = np.cos(nstd * np.random.multivariate_normal(np.zeros(dy), np.eye(dy), num))
else:
X = np.sin(np.matmul(Z, Ax) + nstd * np.random.multivariate_normal(np.zeros(dx), np.eye(dx), num))
Y = np.cos(np.matmul(X, Axy) + np.matmul(Z, Ay) + nstd * np.random.multivariate_normal(np.zeros(dx),
np.eye(dx), num))
if normalize:
Z = (Z - Z.min()) / (Z.max() - Z.min())
X = (X - X.min()) / (X.max() - X.min())
Y = (Y - Y.min()) / (Y.max() - Y.min())
return np.array(X), np.array(Y), np.array(Z)
def dgcit(n=500, z_dim=100, simulation='type1error', batch_size=64, n_iter=1000, train_writer=None,
current_iters=0, nstd=1.0, z_dist='gaussian', x_dims=1, y_dims=1, a_x=0.05, M=500, k=2,
var_idx=1, b=30, j=1000, s=None):
# generate samples x, y, z
# arguments: size, sType='CI', dx=1, dy=1, dz=20, nstd=1, fixed_function='linear',
# debug=False, normalize=True, seed=None, dist_z='gaussian'
if simulation == 'type1error':
# generate samples x, y, z under null hypothesis - x and y are conditional independent
x, y, z = generate_samples_random(size=n, sType='CI', dx=x_dims, dy=y_dims, dz=z_dim, nstd=nstd, alpha_x=a_x,
dist_z=z_dist, seed=s)
elif simulation == 'power':
# generate samples x, y, z under alternative hypothesis - x and y are dependent
x, y, z = generate_samples_random(size=n, sType='dependent', dx=x_dims, dy=y_dims, dz=z_dim, nstd=nstd,
alpha_x=a_x, dist_z=z_dist)
else:
raise ValueError('Test does not exist.')
if k == 2:
# define training and testing subsets, training for learning the sampler and
# testing for computing test statistic. Set 2/3 and 1/3 as default
# x_train, y_train, z_train = x[:int(2 * n / 3), ], y[:int(2 * n / 3), ], z[:int(2 * n / 3), ]
x_train, y_train, z_train = x[:int(n / 2), ], y[:int(n / 2), ], z[:int(n / 2), ]
# build data pipline for test set
x_test, y_test, z_test = x[int(n / 2):, ], y[int(n / 2):, ], z[int(n / 2):, ]
# build data pipline for training set
dataset1 = tf.data.Dataset.from_tensor_slices((x_train, y_train, z_train))
testset1 = tf.data.Dataset.from_tensor_slices((x_test, y_test, z_test))
dataset2 = tf.data.Dataset.from_tensor_slices((x_test, y_test, z_test))
testset2 = tf.data.Dataset.from_tensor_slices((x_train, y_train, z_train))
# Repeat n epochs
epochs = int(n_iter)
dataset1 = dataset1.repeat(epochs)
batched_train1 = dataset1.shuffle(300).batch(batch_size * 2)
# batched_training_set1 = dataset1.shuffle(300).batch(batch_size)
batched_test1 = testset1.batch(1)
dataset2 = dataset2.repeat(epochs)
batched_train2 = dataset2.shuffle(300).batch(batch_size * 2)
batched_test2 = testset2.batch(1)
data_k = [[batched_train1, batched_test1], [batched_train2, batched_test2]]
else:
k = 3
# Repeat n epochs
epochs = int(n_iter)
# define training and testing subsets, I1, I2,..., IK for learning the sampler and
# testing for computing test statistic.
x_1, y_1, z_1 = x[:int(1 * n / k), ], y[:int(1 * n / k), ], z[:int(1 * n / k), ]
# build subset I2
x_2, y_2, z_2 = x[int(1 * n / k):int(2 * n / k), ], y[int(1 * n / k):int(2 * n / k), ], \
z[int(1 * n / k):int(2 * n / k), ]
# build subset I3
x_3, y_3, z_3 = x[int(2 * n / k):, ], y[int(2 * n / k):, ], z[int(2 * n / k):, ]
# build data pipline for training set I1
train_x1 = tf.concat([x_1, x_2], axis=0)
train_y1 = tf.concat([y_1, y_2], axis=0)
train_z1 = tf.concat([z_1, z_2], axis=0)
I1_dataset = tf.data.Dataset.from_tensor_slices((train_x1, train_y1, train_z1))
# Repeat n epochs
I1_training = I1_dataset.repeat(epochs)
I1_training = I1_training.shuffle(100).batch(batch_size*2)
# test-set is the one left
I1_test = tf.data.Dataset.from_tensor_slices((x_3, y_3, z_3))
I1_test = I1_test.batch(1)
train_x2 = tf.concat([x_2, x_3], axis=0)
train_y2 = tf.concat([y_2, y_3], axis=0)
train_z2 = tf.concat([z_2, z_3], axis=0)
I2_dataset = tf.data.Dataset.from_tensor_slices((train_x2, train_y2, train_z2))
# Repeat n epochs
I2_training = I2_dataset.repeat(epochs)
I2_training = I2_training.shuffle(100).batch(batch_size*2)
I2_test = tf.data.Dataset.from_tensor_slices((x_1, y_1, z_1))
I2_test = I2_test.batch(1)
train_x3 = tf.concat([x_1, x_3], axis=0)
train_y3 = tf.concat([y_1, y_3], axis=0)
train_z3 = tf.concat([z_1, z_3], axis=0)
I3_dataset = tf.data.Dataset.from_tensor_slices((train_x3, train_y3, train_z3))
# Repeat n epochs
I3_training = I3_dataset.repeat(epochs)
I3_training = I3_training.shuffle(100).batch(batch_size*2)
I3_test = tf.data.Dataset.from_tensor_slices((x_2, y_2, z_2))
I3_test = I3_test.batch(1)
data_k = [[I1_training, I1_test], [I2_training, I2_test], [I3_training, I3_test]]
return data_k
def main():
# model
model = args.model
# number of samples
sample_size = args.n_samples
batch_size = args.batch_size
# z_dims_scheme = args.z_scheme
z_dims_scheme = [args.z_dims]
dx = args.x_dims
dy = args.y_dims
# alpha_scheme = [0.01, 0.02, 0.03, 0.04, 0.05]
var_list = np.arange(0, 137)
alpha_scheme = [args.alpha_x]
test = args.test
n_test = args.n_tests
n_iters = args.n_iters
eps_std = args.eps_std
dist_z = args.z_dist
alpha_x = args.alpha_x
m_value = args.m_value
k_value = args.n_k
b_value = args.b_b
j_value = args.j_j
lr = 0.0005
seed_save = []
z_dim = 100
train_writer = None
test_count = 0
gen_clipping_val = 0.5
gen_clipping_norm = 1.0
w_clipping_val = 0.5
w_clipping_norm = 1.0
scaling_coef = 1.0
sinkhorn_eps = 0.8
sinkhorn_l = 30
v_dist = tfp.distributions.Normal(0, scale=tf.sqrt(1.0 / 3.0))
gx_optimiser = tf.keras.optimizers.Adam(lr, beta_1=0.5, clipnorm=gen_clipping_norm, clipvalue=gen_clipping_val)
dx_optimiser = tf.keras.optimizers.Adam(lr, beta_1=0.5, clipnorm=w_clipping_norm, clipvalue=w_clipping_val)
gy_optimiser = tf.keras.optimizers.Adam(lr, beta_1=0.5, clipnorm=gen_clipping_norm, clipvalue=gen_clipping_val)
dy_optimiser = tf.keras.optimizers.Adam(lr, beta_1=0.5, clipnorm=w_clipping_norm, clipvalue=w_clipping_val)
# no. of random and hidden dimensions
if z_dim <= 20:
v_dims = int(3)
h_dims = int(3)
else:
v_dims = int(50)
h_dims = int(512)
# v_dims = 10
# h_dims = 128
# create instance of G & D
# input_dims = x_train.shape[1]
for i in range(1, n_test+1):
s = np.random.randint(low=0, high=100000, size=1)
seed_save.append(s)
data_k = dgcit(n=sample_size, z_dim=z_dim, simulation=test, batch_size=batch_size, n_iter=n_iters,
train_writer=train_writer, current_iters=test_count * n_test, nstd=eps_std, z_dist=dist_z,
x_dims=dx, y_dims=dy, a_x=alpha_x, M=m_value, k=k_value, b=b_value, j=j_value)
k = 1
for batched_trainingset, batched_testset in data_k:
generator_x = cit_gan.WGanGenerator(sample_size, z_dim, h_dims, v_dims, dx, batch_size)
generator_y = cit_gan.WGanGenerator(sample_size, z_dim, h_dims, v_dims, dy, batch_size)
discriminator_x = cit_gan.WGanDiscriminator(sample_size, z_dim, h_dims, dx, batch_size)
discriminator_y = cit_gan.WGanDiscriminator(sample_size, z_dim, h_dims, dy, batch_size)
@tf.function
def x_update_d(real_x, real_x_p, real_z, real_z_p, v, v_p):
gen_inputs = tf.concat([real_z, v], axis=1)
gen_inputs_p = tf.concat([real_z_p, v_p], axis=1)
# concatenate real inputs for WGAN discriminator (x, z)
d_real = tf.concat([real_x, real_z], axis=1)
d_real_p = tf.concat([real_x_p, real_z_p], axis=1)
fake_x = generator_x.call(gen_inputs)
fake_x_p = generator_x.call(gen_inputs_p)
d_fake = tf.concat([fake_x, real_z], axis=1)
d_fake_p = tf.concat([fake_x_p, real_z_p], axis=1)
with tf.GradientTape() as disc_tape:
f_real = discriminator_x.call(d_real)
f_fake = discriminator_x.call(d_fake)
f_real_p = discriminator_x.call(d_real_p)
f_fake_p = discriminator_x.call(d_fake_p)
# call compute loss using @tf.function + autograph
loss1 = gan_utils.benchmark_loss(f_real, f_fake, scaling_coef, sinkhorn_eps, sinkhorn_l,
f_real_p, f_fake_p)
# disc_loss = - tf.math.minimum(loss1, 1)
disc_loss = - loss1
# update discriminator parameters
d_grads = disc_tape.gradient(disc_loss, discriminator_x.trainable_variables)
dx_optimiser.apply_gradients(zip(d_grads, discriminator_x.trainable_variables))
@tf.function
def x_update_g(real_x, real_x_p, real_z, real_z_p, v, v_p):
gen_inputs = tf.concat([real_z, v], axis=1)
gen_inputs_p = tf.concat([real_z_p, v_p], axis=1)
# concatenate real inputs for WGAN discriminator (x, z)
d_real = tf.concat([real_x, real_z], axis=1)
d_real_p = tf.concat([real_x_p, real_z_p], axis=1)
with tf.GradientTape() as gen_tape:
fake_x = generator_x.call(gen_inputs)
fake_x_p = generator_x.call(gen_inputs_p)
d_fake = tf.concat([fake_x, real_z], axis=1)
d_fake_p = tf.concat([fake_x_p, real_z_p], axis=1)
f_real = discriminator_x.call(d_real)
f_fake = discriminator_x.call(d_fake)
f_real_p = discriminator_x.call(d_real_p)
f_fake_p = discriminator_x.call(d_fake_p)
# call compute loss using @tf.function + autograph
gen_loss = gan_utils.benchmark_loss(f_real, f_fake, scaling_coef, sinkhorn_eps,
sinkhorn_l, f_real_p, f_fake_p)
# update generator parameters
generator_grads = gen_tape.gradient(gen_loss, generator_x.trainable_variables)
gx_optimiser.apply_gradients(zip(generator_grads, generator_x.trainable_variables))
return gen_loss
@tf.function
def y_update_d(real_x, real_x_p, real_z, real_z_p, v, v_p):
gen_inputs = tf.concat([real_z, v], axis=1)
gen_inputs_p = tf.concat([real_z_p, v_p], axis=1)
# concatenate real inputs for WGAN discriminator (x, z)
d_real = tf.concat([real_x, real_z], axis=1)
d_real_p = tf.concat([real_x_p, real_z_p], axis=1)
fake_x = generator_y.call(gen_inputs)
fake_x_p = generator_y.call(gen_inputs_p)
d_fake = tf.concat([fake_x, real_z], axis=1)
d_fake_p = tf.concat([fake_x_p, real_z_p], axis=1)
with tf.GradientTape() as disc_tape:
f_real = discriminator_y.call(d_real)
f_fake = discriminator_y.call(d_fake)
f_real_p = discriminator_y.call(d_real_p)
f_fake_p = discriminator_y.call(d_fake_p)
# call compute loss using @tf.function + autograph
loss1 = gan_utils.benchmark_loss(f_real, f_fake, scaling_coef, sinkhorn_eps, sinkhorn_l,
f_real_p, f_fake_p)
disc_loss = - loss1
# update discriminator parameters
d_grads = disc_tape.gradient(disc_loss, discriminator_y.trainable_variables)
dy_optimiser.apply_gradients(zip(d_grads, discriminator_y.trainable_variables))
@tf.function
def y_update_g(real_x, real_x_p, real_z, real_z_p, v, v_p):
gen_inputs = tf.concat([real_z, v], axis=1)
gen_inputs_p = tf.concat([real_z_p, v_p], axis=1)
# concatenate real inputs for WGAN discriminator (x, z)
d_real = tf.concat([real_x, real_z], axis=1)
d_real_p = tf.concat([real_x_p, real_z_p], axis=1)
with tf.GradientTape() as gen_tape:
fake_x = generator_y.call(gen_inputs)
fake_x_p = generator_y.call(gen_inputs_p)
d_fake = tf.concat([fake_x, real_z], axis=1)
d_fake_p = tf.concat([fake_x_p, real_z_p], axis=1)
f_real = discriminator_y.call(d_real)
f_fake = discriminator_y.call(d_fake)
f_real_p = discriminator_y.call(d_real_p)
f_fake_p = discriminator_y.call(d_fake_p)
# call compute loss using @tf.function + autograph
gen_loss = gan_utils.benchmark_loss(f_real, f_fake, scaling_coef, sinkhorn_eps,
sinkhorn_l, f_real_p, f_fake_p)
# update generator parameters
generator_grads = gen_tape.gradient(gen_loss, generator_y.trainable_variables)
gy_optimiser.apply_gradients(zip(generator_grads, generator_y.trainable_variables))
return gen_loss
for x_batch, y_batch, z_batch in batched_trainingset.take(n_iters):
if x_batch.shape[0] != batch_size * 2:
continue
x_batch1 = x_batch[0:batch_size, ...]
x_batch2 = x_batch[batch_size:, ...]
y_batch1 = y_batch[0:batch_size, ...]
y_batch2 = y_batch[batch_size:, ...]
z_batch1 = z_batch[0:batch_size, ...]
z_batch2 = z_batch[batch_size:, ...]
noise_v = v_dist.sample([batch_size, v_dims])
noise_v = tf.cast(noise_v, tf.float64)
noise_v_p = v_dist.sample([batch_size, v_dims])
noise_v_p = tf.cast(noise_v_p, tf.float64)
x_update_d(x_batch1, x_batch2, z_batch1, z_batch2, noise_v, noise_v_p)
loss_x = x_update_g(x_batch1, x_batch2, z_batch1, z_batch2, noise_v, noise_v_p)
y_update_d(y_batch1, y_batch2, z_batch1, z_batch2, noise_v, noise_v_p)
loss_y = y_update_g(y_batch1, y_batch2, z_batch1, z_batch2, noise_v, noise_v_p)
generator_x.save_weights("./trained/{}/generatorX_iter{}_k{}/".format(test, i, k))
generator_y.save_weights("./trained/{}/generatorY_iter{}_k{}/".format(test, i, k))
print('Save {}-{} models'.format(i, k))
k += 1
np.savez("./trained/{}/random_seed.npz".format(test), np.asarray(seed_save))
print('Saved random seeds!')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='cit-gan')
parser.add_argument('-m', '--model', type=str, default='dgcit', choices=['dgcit', 'gcit', 'rcit'])
parser.add_argument('-t', '--test', type=str, default='type1error',
choices=['type1error', 'power', 'ccle', 'brain'])
parser.add_argument('-n', '--n_samples', type=int, default=501)
parser.add_argument('-bs', '--batch_size', type=int, default=64)
parser.add_argument('-nt', '--n_tests', type=int, default=500) # number of p_values
parser.add_argument('-ni', '--n_iters', type=int, default=1000) # number of iterations to train GANs
parser.add_argument('-dx', '--x_dims', type=int, default=1)
parser.add_argument('-dy', '--y_dims', type=int, default=1)
parser.add_argument('-dz', '--z_dims', type=int, default=100)
parser.add_argument('-estd', '--eps_std', type=float, default=0.5)
parser.add_argument('-zd', '--z_dist', type=str, default='gaussian', choices=['gaussian', 'laplace'])
parser.add_argument('-ax', '--alpha_x', type=float, default=0.9) # alpha before x in H1
parser.add_argument('-zs', '--z_scheme', type=int, default=[50])
parser.add_argument('-mv', '--m_value', type=int, default=100)
parser.add_argument('-k', '--n_k', type=int, default=3)
parser.add_argument('-b', '--b_b', type=int, default=100)
parser.add_argument('-j', '--j_j', type=int, default=1000)
args = parser.parse_args()
main()