Skip to content
/ CDAN Public

Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018)

Notifications You must be signed in to change notification settings

thuml/CDAN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CDAN

Code release for "Conditional Domain Adversarial Network" (NIPS 2018)

Prerequisites

  • PyTorch >= 0.4.0 (with suitable CUDA and CuDNN version)
  • torchvision >= 0.2.1
  • Python3
  • Numpy
  • argparse
  • PIL

Dataset

Digits

Processed SVHN_dataset is here. We change the original mat into images. Other transformed images are in data/svhn2mnist and data/usps2mnist. Dataset_train.txt are lists for source and target domains and Dataset_test.txt are lists for test.

Office-31

Office-31 dataset can be found here.

Office-Home

Office-Home dataset can be found here.

VisDA-2017

VisDA 2017 dataset can be found here in the classification track.

Image-clef

We release the Image-clef dataset we used here.

Training

All the parameters are set to optimal in our experiments. The following are the command for each task. The test_interval can be changed, which is the number of iterations between near test.

SVHN->MNIST
python train_svhnmnist.py --gpu_id id --epochs 50

USPS->MNIST
python train_uspsmnist.py --gpu_id id --epochs 50 --task USPS2MNIST

MNIST->USPS
python train_uspsmnist.py --gpu_id id --epochs 50 --task MNIST2USPS
Office-31

pythonn train_image.py --gpu_id id --net ResNet50 --dset office --test_interval 500 --s_dset_path ../../data/office/amazon_list.txt --t_dset_path ../../data/office/webcam_list.txt
Office-Home

pythonn train_image.py --gpu_id id --net ResNet50 --dset office-home --test_interval 2000 --s_dset_path ../../data/office-home/Art.txt --t_dset_path ../../data/office-home/Clipart.txt
VisDA 2017

pythonn train_image.py --gpu_id id --net ResNet50 --dset visda --test_interval 5000 --s_dset_path ../../data/visda-2017/train_list.txt --t_dset_path ../../data/visda-2017/validation_list.txt
Image-clef

pythonn train_image.py --gpu_id id --net ResNet50 --dset image-clef --test_interval 500 --s_dset_path ../../data/image-clef/b_list.txt --t_dset_path ../../data/image-clef/i_list.txt

If you want to run the random version of CDAN, add --random as a parameter.

Citation

If you use this code for your research, please consider citing:

@inproceedings{long2018conditional,
  title={Conditional adversarial domain adaptation},
  author={Long, Mingsheng and Cao, Zhangjie and Wang, Jianmin and Jordan, Michael I},
  booktitle={Advances in Neural Information Processing Systems},
  pages={1645--1655},
  year={2018}
}

Contact

If you have any problem about our code, feel free to contact

or describe your problem in Issues.

About

Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published