From b5d0f2a9086e7852b5d7422ed8d4b9ce2c93f47e Mon Sep 17 00:00:00 2001 From: yoinked Date: Tue, 10 Sep 2024 23:49:44 -0700 Subject: [PATCH] Add CFG++ to DPM++ 2S Ancestral (#3871) * Update sampling.py * Update samplers.py * my bad * "fix" the sampler * Update samplers.py * i named it wrong * minor sampling improvements mainly using a dynamic rho value (hey this sounds a lot like smea!!!) * revert rho change rho? r? its just 1/2 --- comfy/k_diffusion/sampling.py | 45 +++++++++++++++++++++++++++++++++++ comfy/samplers.py | 2 +- 2 files changed, 46 insertions(+), 1 deletion(-) diff --git a/comfy/k_diffusion/sampling.py b/comfy/k_diffusion/sampling.py index 385a2516450..f9f9170c906 100644 --- a/comfy/k_diffusion/sampling.py +++ b/comfy/k_diffusion/sampling.py @@ -1101,3 +1101,48 @@ def post_cfg_function(args): if sigmas[i + 1] > 0: x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up return x +@torch.no_grad() +def sample_dpmpp_2s_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None): + if isinstance(model.inner_model.inner_model.model_sampling, comfy.model_sampling.CONST): + return sample_dpmpp_2s_ancestral_RF(model, x, sigmas, extra_args, callback, disable, eta, s_noise, noise_sampler) + + """Ancestral sampling with DPM-Solver++(2S) second-order steps.""" + extra_args = {} if extra_args is None else extra_args + noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler + + temp = [0] + def post_cfg_function(args): + temp[0] = args["uncond_denoised"] + return args["denoised"] + + model_options = extra_args.get("model_options", {}).copy() + extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True) + + s_in = x.new_ones([x.shape[0]]) + sigma_fn = lambda t: t.neg().exp() + t_fn = lambda sigma: sigma.log().neg() + + for i in trange(len(sigmas) - 1, disable=disable): + denoised = model(x, sigmas[i] * s_in, **extra_args) + sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) + if sigma_down == 0: + # Euler method + d = to_d(x, sigmas[i], temp[0]) + dt = sigma_down - sigmas[i] + x = denoised + d * sigma_down + else: + # DPM-Solver++(2S) + t, t_next = t_fn(sigmas[i]), t_fn(sigma_down) + # r = torch.sinh(1 + (2 - eta) * (t_next - t) / (t - t_fn(sigma_up))) works only on non-cfgpp, weird + r = 1 / 2 + h = t_next - t + s = t + r * h + x_2 = (sigma_fn(s) / sigma_fn(t)) * (x + (denoised - temp[0])) - (-h * r).expm1() * denoised + denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args) + x = (sigma_fn(t_next) / sigma_fn(t)) * (x + (denoised - temp[0])) - (-h).expm1() * denoised_2 + # Noise addition + if sigmas[i + 1] > 0: + x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up + return x diff --git a/comfy/samplers.py b/comfy/samplers.py index b278dae242d..a20f65d4a3b 100644 --- a/comfy/samplers.py +++ b/comfy/samplers.py @@ -570,7 +570,7 @@ def max_denoise(self, model_wrap, sigmas): return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_cfg_pp", "heun", "heunpp2","dpm_2", "dpm_2_ancestral", - "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu", + "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu", "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm", "ipndm", "ipndm_v", "deis"]