forked from VincentGranville/Main
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrealmod_full.py
145 lines (134 loc) · 3.84 KB
/
realmod_full.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# realmod.py | MLTechniques.com | vincentg@MLTechniques.com
# Find b such that fresidue(b) = 0, via fixed-point iteration
# Here, fresidue(b) = a mob b (a is a fixed integer; b is a real number)
import math
import random
a = 7919*3083 # product of two prime numbers (purpose: find factor b = 3083)
logeps = -10 # approximation to log(0) = - infinity
eps = 0.00000001 # used b/c Python sometimes fails to compute INT(x) correctly
offset = -100 # offset of linear transform, after log transform
slope = 20 # slope of linear transform, after log transform
mu = 1 # large mu --> large steps between successive b in fixed-point
b0 = 2000 # initial b in fixed-point iterration
window = 5 # size of window search
mode = 'Random' # Options: 'Prime' or 'Random'
# -- transformation needed for fixed-point iteration
def fresidue(b):
# function f_3
sum=0
sumw=0
for w in range(-window,window+1):
sumw = sumw+1
sum += fmod2(b+w)
ry=offset + slope*sum/sumw
return(ry)
def fmod2(b):
# function f_1
ry=fmod(b)
if ry==0:
ry=logeps
else:
ry=math.log(ry)
return(ry)
def fmod(b):
# function f_0
if mode=='Prime':
ry=a-int(b+eps)*int(eps+a/int(b+eps))
elif mode=='Random':
ry=res[int(b+eps)]
return(ry)
#-- smooth the curve f_3
def fresidue4(b):
left = fresidue3(b)
right = fresidue3(b+1)
weight = b - int(eps+b)
ry = (1-weight)*left + weight*right
return(ry)
def fresidue3(b):
f1 = fresidue2(b-5)
f2 = fresidue2(b-6)
f3 = fresidue2(b+4)
ry = (f1+f2+f3)/3
return(ry)
def fresidue2(b):
flag1=0
flag2=0
ry = fresidue(b)
ry2 = ry
if ry2 > fresidue(b+5):
ry2 = ry2 - 0.20*(ry2-fresidue(b+5))
flag1 = 1
if ry2 > fresidue(b+4):
ry2 = ry2 - 0.20*(ry2-fresidue(b+4))
flag1=1
if ry2 > fresidue(b+3):
ry2 = ry2 - 0.20*(ry2-fresidue(b+3))
flag1=1
if ry2 > fresidue(b+2):
ry2 = ry2 - 0.50*(ry2-fresidue(b+2))
flag1=1
if ry2 > fresidue(b+1):
ry2 = ry2 - 0.50*(ry2-fresidue(b+1))
flag1=1
ry3 = ry;
if ry3 < fresidue(b+5):
ry3 = ry3 - 0.30*(ry3-fresidue(b+5))
flag2 = 1
if ry3 < fresidue(b+4):
ry3 = ry3 - 0.30*(ry3-fresidue(b+4))
flag2 = 1
if ry3 < fresidue(b+3):
ry3 = ry3 - 0.30*(ry3-fresidue(b+3))
flag2 = 1
if ry3 < fresidue(b+2):
ry3 = ry3 - 0.30*(ry3-fresidue(b+2))
flag2 = 1
if ry3 < fresidue(b+1):
ry3 = ry3 - 0.50*(ry3-fresidue(b+1))
flag2 = 1
if flag1==1 and flag2==0:
ry = ry2
if flag1==0 and flag2==1:
ry = ry3
if flag1==1 and flag2==1:
gap2 = abs(ry2-ry)
gap3 = abs(ry3-ry)
if gap3 > gap2:
ry = ry3
else:
ry = ry2
return(ry)
#-- preprocessing if mode=='Random'
if mode=='Random':
# pre-compute f_0(b) for all integers b
seed = 105
random.seed(seed)
res={}
for b in range(1,40000):
res[b]=int(b*random.random());
if res[b]==0 and b >= b0:
print("zero if b =", b)
#-- fixed-point iteration
OUT=open("rmodb.txt","w")
b = b0
for n in range(1,390):
old_b = b
b = b + mu*fresidue(b)
delta = b - old_b
line=str(n)+"\t"+str(b)+"\t"+str(delta)+"\n"
OUT.write(line)
OUT.close()
#-- save tabulated function f (transforms and smoothed versions)
import numpy as np
OUT=open("rmod.txt","w")
for b in np.arange(5500, 5800, 0.1):
r0 = fmod(b)
r1 = fmod2(b)
r2 = fresidue(b)
r3 = fresidue2(b)
r4 = fresidue3(b)
r5 = fresidue4(b)
line=str(b)+"\t"+str(r0)+"\t"+str(r1)+"\t"+str(r2)+"\t"+str(r3)+"\t"
line=line+str(r4)+"\t"+str(r5)+"\n"
OUT.write(line)
OUT.close()