-
Notifications
You must be signed in to change notification settings - Fork 4
/
grapher.py
774 lines (577 loc) · 22.4 KB
/
grapher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
import numpy as np
import pandas as pd
import cv2
import os
import sys
# for making adjacency matrix
import networkx as nx
np.set_printoptions(threshold=sys.maxsize)
class ObjectTree:
'''
Description:
-----------
This class is used to generate a dictionary of lists that contain
the graph structure:
{src_id: [dest_id1, dest_id2, ..]}
and return the list of text entities in the input document
Example use:
-----------
>> connector = ObjectTree(label_column='label')
>> connector.read(object_map_df, img)
>> df, obj_list = connector.connect(plot=False, export_df=False)
'''
def __init__(self, label_column='label'):
self.label_column = label_column
self.df = None
self.img = None
self.count = 0
def read(self, object_map, image):
'''
Function to ensure the data is in correct format and saves the
dataframe and image as class properties
Args:
object_map: pd.DataFrame, having coordinates of bounding boxes,
text object and label
image: np.array, black and white cv2 image
Returns:
None
'''
assert type(object_map) == pd.DataFrame,f'object_map should be of type \
{pd.DataFrame}. Received {type(object_map)}'
# assert type(image) == np.ndarray,f'image should be of type {np.ndarray} \
# . Received {type(image)}'
assert 'xmin' in object_map.columns, '"xmin" not in object map'
assert 'xmax' in object_map.columns, '"xmax" not in object map'
assert 'ymin' in object_map.columns, '"ymin" not in object map'
assert 'ymax' in object_map.columns, '"ymax" not in object map'
assert 'Object' in object_map.columns, '"Object" column not in object map'
# assert self.label_column in object_map.columns, \
# f'"{self.label_column}" does not exist in the object map'
# check if image is greyscale
# assert image.ndim == 2, 'Check if the read image is greyscale.'
# drop unneeded columns
required_cols = {'xmin', 'xmax', 'ymin', 'ymax', 'Object',
self.label_column}
un_required_cols = set(object_map.columns) - required_cols
object_map.drop(columns=un_required_cols, inplace=True)
self.df = object_map
self.img = image
return
def connect(self, plot=False, export_df=False):
'''
This method implements the logic to generate a graph based on
visibility. If a horizontal/vertical line can be drawn from one
node to another, the two nodes are connected.
Args:
plot (default=False):
bool, whether to plot the graph;
the graph is plotted in at path ./grapher_outputs/plots
export_df (default=False):
bool, whether to export the dataframe containing graph
information;
the dataframe is exported as csv to path
./grapher_outputs/connections
'''
df, img = self.df, self.img
# check if object map was successfully read by .read() method
try:
if len(df) == 0:
return
except:
return
# initialize empty df to store plotting coordinates
df_plot = pd.DataFrame()
# initialize empty lists to store coordinates and distances
# ================== vertical======================================== #
distances, nearest_dest_ids_vert = [], []
x_src_coords_vert, y_src_coords_vert, x_dest_coords_vert, \
y_dest_coords_vert = [], [], [], []
# ======================= horizontal ================================ #
lengths, nearest_dest_ids_hori = [], []
x_src_coords_hori, y_src_coords_hori, x_dest_coords_hori, \
y_dest_coords_hori = [], [], [], []
for src_idx, src_row in df.iterrows():
# ================= vertical ======================= #
src_range_x = (src_row['xmin'], src_row['xmax'])
src_center_y = (src_row['ymin'] + src_row['ymax'])/2
dest_attr_vert = []
# ================= horizontal ===================== #
src_range_y = (src_row['ymin'], src_row['ymax'])
src_center_x = (src_row['xmin'] + src_row['xmax'])/2
dest_attr_hori = []
################ iterate over destination objects #################
for dest_idx, dest_row in df.iterrows():
# flag to signal whether the destination object is below source
is_beneath = False
if not src_idx == dest_idx:
# ==================== vertical ==========================#
dest_range_x = (dest_row['xmin'], dest_row['xmax'])
dest_center_y = (dest_row['ymin'] + dest_row['ymax'])/2
height = dest_center_y - src_center_y
# consider only the cases where destination object lies
# below source
if dest_center_y > src_center_y:
# check if horizontal range of dest lies within range
# of source
# case 1
if dest_range_x[0] <= src_range_x[0] and \
dest_range_x[1] >= src_range_x[1]:
x_common = (src_range_x[0] + src_range_x[1])/2
line_src = (x_common , src_center_y)
line_dest = (x_common, dest_center_y)
attributes = (dest_idx, line_src, line_dest, height)
dest_attr_vert.append(attributes)
is_beneath = True
# case 2
elif dest_range_x[0] >= src_range_x[0] and \
dest_range_x[1] <= src_range_x[1]:
x_common = (dest_range_x[0] + dest_range_x[1])/2
line_src = (x_common, src_center_y)
line_dest = (x_common, dest_center_y)
attributes = (dest_idx, line_src, line_dest, height)
dest_attr_vert.append(attributes)
is_beneath = True
# case 3
elif dest_range_x[0] <= src_range_x[0] and \
dest_range_x[1] >= src_range_x[0] and \
dest_range_x[1] < src_range_x[1]:
x_common = (src_range_x[0] + dest_range_x[1])/2
line_src = (x_common , src_center_y)
line_dest = (x_common, dest_center_y)
attributes = (dest_idx, line_src, line_dest, height)
dest_attr_vert.append(attributes)
is_beneath = True
# case 4
elif dest_range_x[0] <= src_range_x[1] and \
dest_range_x[1] >= src_range_x[1] and \
dest_range_x[0] > src_range_x[0]:
x_common = (dest_range_x[0] + src_range_x[1])/2
line_src = (x_common , src_center_y)
line_dest = (x_common, dest_center_y)
attributes = (dest_idx, line_src, line_dest, height)
dest_attr_vert.append(attributes)
is_beneath = True
if not is_beneath:
# ======================= horizontal ==================== #
dest_range_y = (dest_row['ymin'], dest_row['ymax'])
# get center of destination NOTE: not used
dest_center_x = (dest_row['xmin'] + dest_row['xmax'])/2
# get length from destination center to source center
if dest_center_x > src_center_x:
length = dest_center_x - src_center_x
else:
length = 0
# consider only the cases where the destination object
# lies to the right of source
if dest_center_x > src_center_x:
#check if vertical range of dest lies within range
# of source
# case 1
if dest_range_y[0] >= src_range_y[0] and \
dest_range_y[1] <= src_range_y[1]:
y_common = (dest_range_y[0] + dest_range_y[1])/2
line_src = (src_center_x, y_common)
line_dest = (dest_center_x, y_common)
attributes = (dest_idx, line_src, line_dest, length)
dest_attr_hori.append(attributes)
# case 2
if dest_range_y[0] <= src_range_y[0] and \
dest_range_y[1] <= src_range_y[1] and \
dest_range_y[1] > src_range_y[0]:
y_common = (src_range_y[0] + dest_range_y[1])/2
line_src = (src_center_x, y_common)
line_dest = (dest_center_x, y_common)
attributes = (dest_idx, line_src, line_dest, length)
dest_attr_hori.append(attributes)
# case 3
if dest_range_y[0] >= src_range_y[0] and \
dest_range_y[1] >= src_range_y[1] and \
dest_range_y[0] < src_range_y[1]:
y_common = (dest_range_y[0] + src_range_y[1])/2
line_src = (src_center_x, y_common)
line_dest = (dest_center_x, y_common)
attributes = (dest_idx, line_src, line_dest, length)
dest_attr_hori.append(attributes)
# case 4
if dest_range_y[0] <= src_range_y[0] \
and dest_range_y[1] >= src_range_y[1]:
y_common = (src_range_y[0] + src_range_y[1])/2
line_src = (src_center_x, y_common)
line_dest = (dest_center_x, y_common)
attributes = (dest_idx, line_src, line_dest, length)
dest_attr_hori.append(attributes)
# sort list of destination attributes by height/length at position
# 3 in tuple
dest_attr_vert_sorted = sorted(dest_attr_vert, key = lambda x: x[3])
dest_attr_hori_sorted = sorted(dest_attr_hori, key = lambda x: x[3])
# append the index and source and destination coords to draw line
# ==================== vertical ================================= #
if len(dest_attr_vert_sorted) == 0:
nearest_dest_ids_vert.append(-1)
x_src_coords_vert.append(-1)
y_src_coords_vert.append(-1)
x_dest_coords_vert.append(-1)
y_dest_coords_vert.append(-1)
distances.append(0)
else:
nearest_dest_ids_vert.append(dest_attr_vert_sorted[0][0])
x_src_coords_vert.append(dest_attr_vert_sorted[0][1][0])
y_src_coords_vert.append(dest_attr_vert_sorted[0][1][1])
x_dest_coords_vert.append(dest_attr_vert_sorted[0][2][0])
y_dest_coords_vert.append(dest_attr_vert_sorted[0][2][1])
distances.append(dest_attr_vert_sorted[0][3])
# ========================== horizontal ========================= #
if len(dest_attr_hori_sorted) == 0:
nearest_dest_ids_hori.append(-1)
x_src_coords_hori.append(-1)
y_src_coords_hori.append(-1)
x_dest_coords_hori.append(-1)
y_dest_coords_hori.append(-1)
lengths.append(0)
else:
# try and except for the cases where there are vertical connections
# still to be made but all horizontal connections are accounted for
try:
nearest_dest_ids_hori.append(dest_attr_hori_sorted[0][0])
except:
nearest_dest_ids_hori.append(-1)
try:
x_src_coords_hori.append(dest_attr_hori_sorted[0][1][0])
except:
x_src_coords_hori.append(-1)
try:
y_src_coords_hori.append(dest_attr_hori_sorted[0][1][1])
except:
y_src_coords_hori.append(-1)
try:
x_dest_coords_hori.append(dest_attr_hori_sorted[0][2][0])
except:
x_dest_coords_hori.append(-1)
try:
y_dest_coords_hori.append(dest_attr_hori_sorted[0][2][1])
except:
y_dest_coords_hori.append(-1)
try:
lengths.append(dest_attr_hori_sorted[0][3])
except:
lengths.append(0)
# ==================== vertical ===================================== #
# create df for plotting lines
df['below_object'] = df.loc[nearest_dest_ids_vert, 'Object'].values
# add distances column
df['below_dist'] = distances
# add column containing index of destination object
df['below_obj_index'] = nearest_dest_ids_vert
# add coordinates for plotting
df_plot['x_src_vert'] = x_src_coords_vert
df_plot['y_src_vert'] = y_src_coords_vert
df_plot['x_dest_vert'] = x_dest_coords_vert
df_plot['y_dest_vert'] = y_dest_coords_vert
# df.fillna('NULL', inplace = True)
# ==================== horizontal =================================== #
# create df for plotting lines
df['side_object'] = df.loc[nearest_dest_ids_hori, 'Object'].values
# add lengths column
df['side_length'] = lengths
# add column containing index of destination object
df['side_obj_index'] = nearest_dest_ids_hori
# add coordinates for plotting
df_plot['x_src_hori'] = x_src_coords_hori
df_plot['y_src_hori'] = y_src_coords_hori
df_plot['x_dest_hori'] = x_dest_coords_hori
df_plot['y_dest_hori'] = y_dest_coords_hori
########################## concat df and df_plot ######################
df_merged = pd.concat([df, df_plot], axis=1)
# if an object has more than one parent above it, only the connection
# with the smallest distance is retained and the other distances are
# replaced by '-1' to get such objects, group by 'below_object' column
# and use minimum of 'below_dist'
# ======================= vertical ================================== #
groups_vert = df_merged.groupby('below_obj_index')['below_dist'].min()
# groups.index gives a list of the below_object text and groups.values
# gives the corresponding minimum distance
groups_dict_vert = dict(zip(groups_vert.index, groups_vert.values))
# ======================= horizontal ================================ #
groups_hori = df_merged.groupby('side_obj_index')['side_length'].min()
# groups.index gives a list of the below_object text and groups.values
# gives the corresponding minimum distance
groups_dict_hori = dict(zip(groups_hori.index, groups_hori.values))
revised_distances_vert = []
revised_distances_hori = []
rev_x_src_vert, rev_y_src_vert, rev_x_dest_vert, rev_y_dest_vert = \
[], [], [], []
rev_x_src_hori, rev_y_src_hori, rev_x_dest_hori, rev_y_dest_hori = \
[], [], [], []
# NOTE: added fillna because of Nans coming up in `below/side_obj_index`
# df_merged.fillna(-1, inplace=True)
for idx, row in df_merged.iterrows():
below_idx = row['below_obj_index']
side_idx = row['side_obj_index']
# ======================== vertical ============================= #
if row['below_dist'] > groups_dict_vert[below_idx]:
revised_distances_vert.append(-1)
rev_x_src_vert.append(-1)
rev_y_src_vert.append(-1)
rev_x_dest_vert.append(-1)
rev_y_dest_vert.append(-1)
else:
revised_distances_vert.append(row['below_dist'])
rev_x_src_vert.append(row['x_src_vert'])
rev_y_src_vert.append(row['y_src_vert'])
rev_x_dest_vert.append(row['x_dest_vert'])
rev_y_dest_vert.append(row['y_dest_vert'])
# ========================== horizontal ========================= #
if row['side_length'] > groups_dict_hori[side_idx]:
revised_distances_hori.append(-1)
rev_x_src_hori.append(-1)
rev_y_src_hori.append(-1)
rev_x_dest_hori.append(-1)
rev_y_dest_hori.append(-1)
else:
revised_distances_hori.append(row['side_length'])
rev_x_src_hori.append(row['x_src_hori'])
rev_y_src_hori.append(row['y_src_hori'])
rev_x_dest_hori.append(row['x_dest_hori'])
rev_y_dest_hori.append(row['y_dest_hori'])
# store in dataframe
# ============================ vertical ============================= #
df['revised_distances_vert'] = revised_distances_vert
df_merged['x_src_vert'] = rev_x_src_vert
df_merged['y_src_vert'] = rev_y_src_vert
df_merged['x_dest_vert'] = rev_x_dest_vert
df_merged['y_dest_vert'] = rev_y_dest_vert
# ======================== horizontal =============================== #
df['revised_distances_hori'] = revised_distances_hori
df_merged['x_src_hori'] = rev_x_src_hori
df_merged['y_src_hori'] = rev_y_src_hori
df_merged['x_dest_hori'] = rev_x_dest_hori
df_merged['y_dest_hori'] = rev_y_dest_hori
# plot image if plot==True
if plot == True:
# make folder to store output
if not os.path.exists('grapher_outputs'):
os.makedirs('grapher_outputs')
# subdirectory to store plots
if not os.path.exists('./grapher_outputs/plots'):
os.makedirs('./grapher_outputs/plots')
# check if image exists in folder
try:
if len(img) == None:
pass
except:
pass
# plot if image exists
else:
for idx, row in df_merged.iterrows():
cv2.line(img,
(int(row['x_src_vert']), int(row['y_src_vert'])),
(int(row['x_dest_vert']), int(row['y_dest_vert'])),
(0,0,255), 2)
cv2.line(img,
(int(row['x_src_hori']), int(row['y_src_hori'])),
(int(row['x_dest_hori']), int(row['y_dest_hori'])),
(0,0,255), 2)
# write image in same folder
PLOT_PATH = \
'./grapher_outputs/plots/' + 'object_tree_' + str(self.count) + '.jpg'
cv2.imwrite(PLOT_PATH, img)
# export dataframe with destination objects to csv in same folder
if export_df == True:
# make folder to store output
if not os.path.exists('grapher_outputs'):
os.makedirs('grapher_outputs')
# subdirectory to store plots
if not os.path.exists('./grapher_outputs/connections'):
os.makedirs('./grapher_outputs/connections')
CSV_PATH = \
'./grapher_outputs/connections/' + 'connections_' + str(self.count) + '.csv'
df.to_csv(CSV_PATH, index = None)
# convert dataframe to dict:
# {src_id: dest_1, dest_2, ..}
graph_dict = {}
for src_id, row in df.iterrows():
if row['below_obj_index'] != -1:
if src_id in graph_dict.keys():
graph_dict[src_id].append(row['below_obj_index'])
else:
graph_dict[src_id] = [row['below_obj_index']]
if row['side_obj_index'] != -1:
if src_id in graph_dict.keys():
graph_dict[src_id].append(row['side_obj_index'])
else:
graph_dict[src_id] = [row['side_obj_index']]
return graph_dict, df['Object'].tolist(), df[['xmin',
'ymin',
'xmax',
'ymax']].values
class Graph:
'''
This class generates a padded adjacency matrix and a feature matrix
'''
def __init__(self, max_nodes=50):
self.max_nodes = max_nodes
self.image = None
return
# def make_graph(self, graph_dict):
# '''
# Function to make networkx graph
# Args:
# graph_dict: dict of lists,
# {src_id: [dest_id]}
# Returns:
# G:
# Padded adjacency matrix of size (max_nodes, max_nodes)
# feats:
# Padded feature matrix of size (max_nodes, m)
# (m: dimension of node text vector)
# '''
# G = nx.from_dict_of_lists(graph_dict)
# return G
def _get_text_features(self, data):
'''
Args:
str, input data
Returns:
np.array, shape=(35,);
an array of the text converted to features
'''
assert type(data) == str, f'Expected type {str}. Received {type(data)}.'
data = r'{}'.format(data)
n_lower = 0
n_upper = 0
n_digits = 0
# make a mapping dict of special characters
mapping_dict = {
'-': 0,
'.': 1,
',': 2,
'/': 3,
'\\': 4,
':': 5
}
initial_len_mapping_dict = len(mapping_dict)
# add the alphabet as the keys to the mapping dict
for idx, char in enumerate('abcedfghijklmnopqrstuvwxyz'):
mapping_dict[char] = idx + initial_len_mapping_dict
# get number of lower and upper case letters
for char in data:
if char.islower():
n_lower += 1
if char.isupper():
n_upper += 1
if char.isdigit():
n_digits += 1
# concat to form the vector in form:
# | 0-29: character mapping | n_lower | n_upper | n_digits |
vector_arr = np.zeros(35)
for char in data.lower():
if char in mapping_dict.keys():
vector_arr[mapping_dict[char]] += 1
else:
pass
vector_arr[32] = n_lower
vector_arr[33] = n_upper
vector_arr[34] = n_digits
return vector_arr
def _get_positional_embeddings(self, coordinate_arr):
'''
This method returns the normalized array of coordinates as per the shape
of the image
Args:
coordinate_arr: [`xmin`, `ymin`, `xmax`, `ymax`]
Returns:
Normalized coordinate array
'''
image_height, image_width = self.img_dims
normalized_coordinate_list = []
normalized_coordinate_list.append(coordinate_arr[0]/image_width)
normalized_coordinate_list.append(coordinate_arr[1]/image_height)
normalized_coordinate_list.append(coordinate_arr[2]/image_width)
normalized_coordinate_list.append(coordinate_arr[3]/image_height)
return np.array(normalized_coordinate_list)
def _pad_adj(self, adj):
'''
This method resizes the input Adjacency matrix to shape
(self.max_nodes, self.max_nodes)
adj:
2d numpy array
adjacency matrix
'''
assert adj.shape[0] == adj.shape[1], f'The input adjacency matrix is \
not square and has shape {adj.shape}'
# get n of nxn matrix
n = adj.shape[0]
if n < self.max_nodes:
target = np.zeros(shape=(self.max_nodes, self.max_nodes))
# fill in the target matrix with the adjacency
target[:adj.shape[0], :adj.shape[1]] = adj
elif n > self.max_nodes:
# cut away the excess rows and columns of adj
target = adj[:self.max_nodes, :self.max_nodes]
else:
# do nothing
target = adj
return target
def _pad_text_features(self, feat_arr):
'''
This method pads the feature matrix to size
(self.max_nodes, feat_arr.shape[1])
'''
target = np.zeros(shape=(self.max_nodes, feat_arr.shape[1]))
if self.max_nodes > feat_arr.shape[0]:
target[:feat_arr.shape[0], :feat_arr.shape[1]] = feat_arr
elif self.max_nodes < feat_arr.shape[0]:
target = feat_arr[:self.max_nodes, feat_arr.shape[1]]
else:
target = feat_arr
return target
def make_graph_data(self, graph_dict, text_list, coords_arr, img_dims):
'''
Function to make an adjacency matrix from a networkx graph object
as well as padded feature matrix
Args:
G: networkx graph object
text_list: list,
of text entities:
['Tax Invoice', '1/2/2019', ...]
coords_arr: np.array, of coordinates for each node
img: cv2 image of the document
Returns:
A: Adjacency matrix as np.array
X: Feature matrix as numpy array for input graph
'''
self.img_dims = img_dims
G = nx.from_dict_of_lists(graph_dict)
adj_sparse = nx.adjacency_matrix(G)
# preprocess the sparse adjacency matrix returned by networkx function
A = np.array(adj_sparse.todense())
# NOTE: this was removed so as to not pad the adjacency matrix
# A = self._pad_adj(A)
# preprocess the list of text entities
feat_list = list(map(self._get_text_features, text_list))
feat_arr = np.array(feat_list)
# get positional embeddings
pos_list = list(map(self._get_positional_embeddings, coords_arr))
pos_arr = np.array(pos_list)
# concatenate positional features with text features
feat_arr = np.concatenate((pos_arr, feat_arr), axis=1)
# NOTE: this was removed so as to not pad the feature matrix
X = feat_arr
# X = self._pad_text_features(X)
return A, X
if __name__ == "__main__":
print(os.getcwd())
df = pd.read_csv(r'C:\Users\Think Analytics\Desktop\Side_Projects\graph_test\object_map.csv')
img = cv2.imread(r'C:\Users\Think Analytics\Desktop\Side_Projects\graph_test\deskew.jpg', 0)
tree = ObjectTree()
tree.read(df, img)
graph_dict, text_list, coords_arr = tree.connect(plot=True, export_df=True)
print(graph_dict)
print('\n--------------------------------------------------------------\n')
graph = Graph()
A, X = graph.make_graph_data(graph_dict, text_list, coords_arr, img)
print(A)
print('-----------------------------------------------------------------\n')
print(X)
np.save('./A.npy', A)
np.save('./X.npy', X)