forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtversky_loss.py
137 lines (121 loc) · 4.71 KB
/
tversky_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright (c) OpenMMLab. All rights reserved.
"""Modified from
https://github.com/JunMa11/SegLoss/blob/master/losses_pytorch/dice_loss.py#L333
(Apache-2.0 License)"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from ..builder import LOSSES
from .utils import get_class_weight, weighted_loss
@weighted_loss
def tversky_loss(pred,
target,
valid_mask,
alpha=0.3,
beta=0.7,
smooth=1,
class_weight=None,
ignore_index=255):
assert pred.shape[0] == target.shape[0]
total_loss = 0
num_classes = pred.shape[1]
for i in range(num_classes):
if i != ignore_index:
tversky_loss = binary_tversky_loss(
pred[:, i],
target[..., i],
valid_mask=valid_mask,
alpha=alpha,
beta=beta,
smooth=smooth)
if class_weight is not None:
tversky_loss *= class_weight[i]
total_loss += tversky_loss
return total_loss / num_classes
@weighted_loss
def binary_tversky_loss(pred,
target,
valid_mask,
alpha=0.3,
beta=0.7,
smooth=1):
assert pred.shape[0] == target.shape[0]
pred = pred.reshape(pred.shape[0], -1)
target = target.reshape(target.shape[0], -1)
valid_mask = valid_mask.reshape(valid_mask.shape[0], -1)
TP = torch.sum(torch.mul(pred, target) * valid_mask, dim=1)
FP = torch.sum(torch.mul(pred, 1 - target) * valid_mask, dim=1)
FN = torch.sum(torch.mul(1 - pred, target) * valid_mask, dim=1)
tversky = (TP + smooth) / (TP + alpha * FP + beta * FN + smooth)
return 1 - tversky
@LOSSES.register_module()
class TverskyLoss(nn.Module):
"""TverskyLoss. This loss is proposed in `Tversky loss function for image
segmentation using 3D fully convolutional deep networks.
<https://arxiv.org/abs/1706.05721>`_.
Args:
smooth (float): A float number to smooth loss, and avoid NaN error.
Default: 1.
class_weight (list[float] | str, optional): Weight of each class. If in
str format, read them from a file. Defaults to None.
loss_weight (float, optional): Weight of the loss. Default to 1.0.
ignore_index (int | None): The label index to be ignored. Default: 255.
alpha(float, in [0, 1]):
The coefficient of false positives. Default: 0.3.
beta (float, in [0, 1]):
The coefficient of false negatives. Default: 0.7.
Note: alpha + beta = 1.
loss_name (str, optional): Name of the loss item. If you want this loss
item to be included into the backward graph, `loss_` must be the
prefix of the name. Defaults to 'loss_tversky'.
"""
def __init__(self,
smooth=1,
class_weight=None,
loss_weight=1.0,
ignore_index=255,
alpha=0.3,
beta=0.7,
loss_name='loss_tversky'):
super().__init__()
self.smooth = smooth
self.class_weight = get_class_weight(class_weight)
self.loss_weight = loss_weight
self.ignore_index = ignore_index
assert (alpha + beta == 1.0), 'Sum of alpha and beta but be 1.0!'
self.alpha = alpha
self.beta = beta
self._loss_name = loss_name
def forward(self, pred, target, **kwargs):
if self.class_weight is not None:
class_weight = pred.new_tensor(self.class_weight)
else:
class_weight = None
pred = F.softmax(pred, dim=1)
num_classes = pred.shape[1]
one_hot_target = F.one_hot(
torch.clamp(target.long(), 0, num_classes - 1),
num_classes=num_classes)
valid_mask = (target != self.ignore_index).long()
loss = self.loss_weight * tversky_loss(
pred,
one_hot_target,
valid_mask=valid_mask,
alpha=self.alpha,
beta=self.beta,
smooth=self.smooth,
class_weight=class_weight,
ignore_index=self.ignore_index)
return loss
@property
def loss_name(self):
"""Loss Name.
This function must be implemented and will return the name of this
loss function. This name will be used to combine different loss items
by simple sum operation. In addition, if you want this loss item to be
included into the backward graph, `loss_` must be the prefix of the
name.
Returns:
str: The name of this loss item.
"""
return self._loss_name