cd scripts/
python DataDownloader.py
python ModelTrainer.py all
Then you can run each notebook and reproduce the results.
All datasets are available in this drive directory.
You can simply train each network with a specific dataset with the following scripts:
python -m scripts.train_trVAE kang[haber]
python -m scripts.train_DCtrVAE mnist[celeba]
python -m scripts.train_cvae kang[haber]
python -m scripts.train_cyclegan kang[haber]
python -m scripts.train_mdcvae kang[haber]
python -m scripts.train_saucie kang[haber]
python -m scripts.train_scGen kang[haber]
python -m scripts.train_scVI kang[haber]
Study | notebook path |
---|---|
Haber et. al | Jupyter Notebooks/Haber.ipynb |
Kang et. al | Jupyter Notebooks/Kang.ipynb |
CelebA | Jupyter Notebooks/CelebA.ipynb |
Figures | notebook path |
---|---|
Method Comparison - Haber et. al | Jupyter Notebooks/methodComparison-Haber.ipynb |
Method Comparison - Kang et. al | Jupyter Notebooks/methodComparison-Kang.ipynb |
Runtime Comparison - Kang et. al | Jupyter Notebooks/Time.ipynb |
Simulation Response - Kang et. al | Jupyter Notebooks/BoxPlots_StackedViolins - Kang.ipynb |
To run the notebooks and scripts you need following packages :
tensorflow, scanpy, numpy, matplotlib, scipy, wget.