forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgemm.h
270 lines (229 loc) · 8.43 KB
/
gemm.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
/***************************************************************************************************
* Copyright (c) 2017-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Reference implementation for GEMM in host-side code.
*/
#pragma once
#include "cutlass/coord.h"
#include "cutlass/matrix_traits.h"
#include "cutlass/tensor_view.h"
#include "cutlass/gemm/gemm_coord.h"
namespace cutlass {
namespace reference {
namespace host {
////////////////////////////////////////////////////////////////////////////////////////////////////
namespace detail {
/// Template function to compute an inner product.
template <typename Atype, typename Btype, typename Ctype>
Ctype inner_product(Atype a, Btype b, Ctype c) {
return Ctype(a) * Ctype(b) + c;
}
/// Specialization for matrix multiplication with binary operands
template <>
inline int inner_product<Vector<bin1_t, 32>, Vector<bin1_t, 32>, int>(
Vector<bin1_t, 32> a,
Vector<bin1_t, 32> b,
int c) {
int accum = 0;
for (int bit = 0; bit < 32; bit++) {
accum += a[bit] ^ b[bit];
}
return accum + c;
}
/// Specialization for matrix multiplication with signed 4-bit integer operands
template <> inline
int inner_product<Vector<int4_t, 8>, Vector<int4_t, 8>, int>(
Vector<int4_t, 8> a,
Vector<int4_t, 8> b,
int c) {
int accum = 0;
for (int k = 0; k < 8; k++) {
accum += a[k] * b[k];
}
return accum + c;
}
/// Specialization for matrix multiplication with unsigned 4-bit integer operands
template <> inline
int inner_product<Vector<uint4_t, 8>, Vector<uint4_t, 8>, int>(
Vector<uint4_t, 8> a,
Vector<uint4_t, 8> b,
int c) {
int accum = 0;
for (int k = 0; k < 8; k++) {
accum += a[k] * b[k];
}
return accum + c;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename SrcType, typename DstType>
struct Cast {
// Default behavior: convert to the destination type
static inline DstType apply(SrcType src) { return static_cast<DstType>(src); };
};
template <>
struct Cast<float, int8_t> {
static inline int8_t apply(float src) {
// Clamp to the range of signed 8-bit integers.
return static_cast<int8_t>(fmaxf(-128.f, fminf(127.f, src)));
};
};
template <>
struct Cast<float, uint8_t> {
static inline uint8_t apply(float src) {
// Clamp to the range of signed 8-bit integers.
return static_cast<uint8_t>(fmaxf(0.f, fminf(255.f, src)));
};
};
} // namespace detail
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Computes a general matrix product among matrices (tensors of rank=2) pointed to by TensorRef
/// objects.
///
/// Explicitly naming types needed by this template can be cumbersome, particularly for the
/// accumulator type, so a function argument 'initial_accum' is exposed. Passing
/// AccumulatorType(0) as the last function argument can be easier than naming all template
/// arguments explicitly.
template <
typename TensorRefA,
typename TensorRefB,
typename TensorRefC,
typename ScalarType,
typename AccumulatorType
>
void Gemm(
gemm::GemmCoord problem_size,
ScalarType alpha,
TensorRefA tensor_a,
TensorRefB tensor_b,
ScalarType beta,
TensorRefC tensor_c,
AccumulatorType initial_accum) {
typedef typename TensorRefA::Storage AType;
typedef typename TensorRefB::Storage BType;
typedef typename TensorRefC::Storage CType;
static_assert(
TensorRefA::kRank == 2 &&
TensorRefB::kRank == 2 &&
TensorRefC::kRank == 2, "Tensors must be of rank 2");
// Note: batch is ignored.
int const M = problem_size.m();
int const N = problem_size.n();
int const K = problem_size.k();
// Blocking necessary to speedup reference implementation
int const Mblock = 32;
int const Nblock = 32;
for (int row_block = 0; row_block < M; row_block += Mblock) {
for (int col_block = 0; col_block < N; col_block += Nblock) {
AccumulatorType accum[Mblock][Nblock];
for (int j = 0; j < Nblock; j++) {
for (int i = 0; i < Mblock; i++) {
accum[i][j] = initial_accum;
}
}
for (int k_block = 0; k_block < K; ++k_block) {
for (int j = 0; j < Nblock; j++) {
for (int i = 0; i < Mblock; i++) {
int row = row_block + i;
int col = col_block + j;
if (row < M && col < N) {
AType a = tensor_a.at(MatrixCoord(row, k_block));
BType b = tensor_b.at(MatrixCoord(k_block, col));
accum[i][j] = detail::inner_product(a, b, accum[i][j]);
}
}
}
}
for (int j = 0; j < Nblock; j++) {
for (int i = 0; i < Mblock; i++) {
int row = row_block + i;
int col = col_block + j;
MatrixCoord coord = MatrixCoord(row, col);
if (row < M && col < N) {
tensor_c.at(coord) = detail::Cast<ScalarType, CType>::apply(
alpha * ScalarType(accum[i][j]) +
beta * ScalarType(tensor_c.at(coord)));
}
}
}
}
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Computes a general matrix product among matrices (tensors of rank=2) pointed to by TensorRef
/// objects.
///
/// This assumes the accumulator type is the same type as the scalars.
template <
typename TensorRefA,
typename TensorRefB,
typename TensorRefC,
typename ScalarType
>
void Gemm(
gemm::GemmCoord problem_size,
ScalarType alpha,
TensorRefA tensor_a,
TensorRefB tensor_b,
ScalarType beta,
TensorRefC tensor_c) {
Gemm(problem_size, alpha, tensor_a, tensor_b, beta, tensor_c, ScalarType(0));
}
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Computes a batch of GEMMs over a set of matrices of common dimension.
template <
typename TensorRefCollectionA,
typename TensorRefCollectionB,
typename TensorRefCollectionC,
typename ScalarType,
typename AccumulatorType
>
void BatchGemm(
gemm::GemmCoord problem_size,
ScalarType alpha,
TensorRefCollectionA const& tensor_a,
TensorRefCollectionB const& tensor_b,
ScalarType beta,
TensorRefCollectionC &tensor_c,
AccumulatorType initial_accum = AccumulatorType(0)) {
typename TensorRefCollectionA::ConstIterator tensor_a_it = tensor_a.begin();
typename TensorRefCollectionB::ConstIterator tensor_b_it = tensor_b.begin();
typename TensorRefCollectionC::ConstIterator tensor_c_it = tensor_c.begin();
for (int batch = 0;
batch < problem_size.batch();
++batch, ++tensor_a_it, ++tensor_b_it, ++tensor_c_it) {
Gemm(
problem_size,
alpha,
*tensor_a_it,
*tensor_b_it,
beta,
*tensor_c_it,
initial_accum);
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace host
} // namespace reference
} // namespace cutlass