-
Notifications
You must be signed in to change notification settings - Fork 53
/
highlife.py
54 lines (46 loc) · 1.29 KB
/
highlife.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import numpy as np
import time
from lib import fft_convolve2d
import matplotlib.pyplot as plt
plt.ion()
def high_life(state, k=None):
"""
'HighLife' automata state transition
http://www.conwaylife.com/wiki/HighLife
"""
if k == None:
m, n = state.shape
k = np.zeros((m, n))
k[m/2-1 : m/2+2, n/2-1 : n/2+2] = np.array([[1,1,1],[1,0,1],[1,1,1]])
# computes sums around each pixel
b = fft_convolve2d(state,k).round()
c = np.zeros(b.shape)
c[np.where((b == 2) & (state == 1))] = 1
c[np.where((b == 3) & (state == 1))] = 1
c[np.where((b == 3) & (state == 0))] = 1
c[np.where((b == 6) & (state == 0))] = 1
# return new state
return c
if __name__ == "__main__":
# set up board randomly
m,n = 100,100
A = np.zeros((m,n))
A = 0.63*np.random.random(m*n).reshape((m, n))
A = A.round()
# start up an isolated replicator pattern in the upper left
A[:75, :75] = 0
A[10,11] = 1
A[10,12] = 1
A[10,13] = 1
A[11,10] = 1
A[12,10] = 1
A[13,10] = 1
# plot each frame
plt.figure()
img_plot = plt.imshow(A, interpolation="nearest", cmap = plt.cm.gray)
plt.show(block=False)
while True:
A = high_life(A)
img_plot.set_data(A)
plt.draw()
time.sleep(0.01)