-
Notifications
You must be signed in to change notification settings - Fork 9.6k
/
Copy pathequationdetect.h
273 lines (217 loc) · 11 KB
/
equationdetect.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
///////////////////////////////////////////////////////////////////////
// File: equationdetect.h
// Description: The equation detection class that inherits equationdetectbase.
// Author: Zongyi (Joe) Liu (joeliu@google.com)
//
// (C) Copyright 2011, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
#ifndef TESSERACT_CCMAIN_EQUATIONDETECT_H_
#define TESSERACT_CCMAIN_EQUATIONDETECT_H_
#include "blobbox.h" // for BLOBNBOX (ptr only), BlobSpecialText...
#include "equationdetectbase.h" // for EquationDetectBase
#include <tesseract/genericvector.h> // for GenericVector
#include "tesseractclass.h" // for Tesseract
#include <tesseract/unichar.h> // for UNICHAR_ID
class TBOX;
class UNICHARSET;
namespace tesseract {
class Tesseract;
class ColPartition;
class ColPartitionGrid;
class ColPartitionSet;
class EquationDetect : public EquationDetectBase {
public:
EquationDetect(const char* equ_datapath,
const char* equ_language);
~EquationDetect() override;
enum IndentType {
NO_INDENT,
LEFT_INDENT,
RIGHT_INDENT,
BOTH_INDENT,
INDENT_TYPE_COUNT
};
// Reset the lang_tesseract_ pointer. This function should be called before we
// do any detector work.
void SetLangTesseract(Tesseract* lang_tesseract);
// Iterate over the blobs inside to_block, and set the blobs that we want to
// process to BSTT_NONE. (By default, they should be BSTT_SKIP). The function
// returns 0 upon success.
int LabelSpecialText(TO_BLOCK* to_block) override;
// Find possible equation partitions from part_grid. Should be called
// after the special_text_type of blobs are set.
// It returns 0 upon success.
int FindEquationParts(ColPartitionGrid* part_grid,
ColPartitionSet** best_columns) override;
// Reset the resolution of the processing image. TEST only function.
void SetResolution(const int resolution);
protected:
// Identify the special text type for one blob, and update its field. When
// height_th is set (> 0), we will label the blob as BSTT_NONE if its height
// is less than height_th.
void IdentifySpecialText(BLOBNBOX *blob, const int height_th);
// Estimate the type for one unichar.
BlobSpecialTextType EstimateTypeForUnichar(
const UNICHARSET& unicharset, const UNICHAR_ID id) const;
// Compute special text type for each blobs in part_grid_.
void IdentifySpecialText();
// Identify blobs that we want to skip during special blob type
// classification.
void IdentifyBlobsToSkip(ColPartition* part);
// The ColPartitions in part_grid_ maybe over-segmented, particularly in the
// block equation regions. So we like to identify these partitions and merge
// them before we do the searching.
void MergePartsByLocation();
// Staring from the seed center, we do radius search. And for partitions that
// have large overlaps with seed, we remove them from part_grid_ and add into
// parts_overlap. Note: this function may update the part_grid_, so if the
// caller is also running ColPartitionGridSearch, use the RepositionIterator
// to continue.
void SearchByOverlap(ColPartition* seed,
GenericVector<ColPartition*>* parts_overlap);
// Insert part back into part_grid_, after it absorbs some other parts.
void InsertPartAfterAbsorb(ColPartition* part);
// Identify the colparitions in part_grid_, label them as PT_EQUATION, and
// save them into cp_seeds_.
void IdentifySeedParts();
// Check the blobs count for a seed region candidate.
bool CheckSeedBlobsCount(ColPartition* part);
// Compute the foreground pixel density for a tbox area.
float ComputeForegroundDensity(const TBOX& tbox);
// Check if part from seed2 label: with low math density and left indented. We
// are using two checks:
// 1. If its left is aligned with any coordinates in indented_texts_left,
// which we assume have been sorted.
// 2. If its foreground density is over foreground_density_th.
bool CheckForSeed2(
const GenericVector<int>& indented_texts_left,
const float foreground_density_th,
ColPartition* part);
// Count the number of values in sorted_vec that is close to val, used to
// check if a partition is aligned with text partitions.
int CountAlignment(
const GenericVector<int>& sorted_vec, const int val) const;
// Check for a seed candidate using the foreground pixel density. And we
// return true if the density is below a certain threshold, because characters
// in equation regions usually are apart with more white spaces.
bool CheckSeedFgDensity(const float density_th, ColPartition* part);
// A light version of SplitCPHor: instead of really doing the part split, we
// simply compute the union bounding box of each split part.
void SplitCPHorLite(ColPartition* part, GenericVector<TBOX>* splitted_boxes);
// Split the part (horizontally), and save the split result into
// parts_splitted. Note that it is caller's responsibility to release the
// memory owns by parts_splitted. On the other hand, the part is unchanged
// during this process and still owns the blobs, so do NOT call DeleteBoxes
// when freeing the colpartitions in parts_splitted.
void SplitCPHor(ColPartition* part,
GenericVector<ColPartition*>* parts_splitted);
// Check the density for a seed candidate (part) using its math density and
// italic density, returns true if the check passed.
bool CheckSeedDensity(const float math_density_high,
const float math_density_low,
const ColPartition* part) const;
// Check if part is indented.
IndentType IsIndented(ColPartition* part);
// Identify inline partitions from cp_seeds_, and re-label them.
void IdentifyInlineParts();
// Compute the super bounding box for all colpartitions inside part_grid_.
void ComputeCPsSuperBBox();
// Identify inline partitions from cp_seeds_ using the horizontal search.
void IdentifyInlinePartsHorizontal();
// Estimate the line spacing between two text partitions. Returns -1 if not
// enough data.
int EstimateTextPartLineSpacing();
// Identify inline partitions from cp_seeds_ using vertical search.
void IdentifyInlinePartsVertical(const bool top_to_bottom,
const int textPartsLineSpacing);
// Check if part is an inline equation zone. This should be called after we
// identified the seed regions.
bool IsInline(const bool search_bottom,
const int textPartsLineSpacing,
ColPartition* part);
// For a given seed partition, we search the part_grid_ and see if there is
// any partition can be merged with it. It returns true if the seed has been
// expanded.
bool ExpandSeed(ColPartition* seed);
// Starting from the seed position, we search the part_grid_
// horizontally/vertically, find all partitions that can be
// merged with seed, remove them from part_grid_, and put them into
// parts_to_merge.
void ExpandSeedHorizontal(const bool search_left,
ColPartition* seed,
GenericVector<ColPartition*>* parts_to_merge);
void ExpandSeedVertical(const bool search_bottom,
ColPartition* seed,
GenericVector<ColPartition*>* parts_to_merge);
// Check if a part_box is the small neighbor of seed_box.
bool IsNearSmallNeighbor(const TBOX& seed_box,
const TBOX& part_box) const;
// Perform the density check for part, which we assume is nearing a seed
// partition. It returns true if the check passed.
bool CheckSeedNeighborDensity(const ColPartition* part) const;
// After identify the math blocks, we do one more scanning on all text
// partitions, and check if any of them is the satellite of:
// math blocks: here a p is the satellite of q if:
// 1. q is the nearest vertical neighbor of p, and
// 2. y_gap(p, q) is less than a threshold, and
// 3. x_overlap(p, q) is over a threshold.
// Note that p can be the satellites of two blocks: its top neighbor and
// bottom neighbor.
void ProcessMathBlockSatelliteParts();
// Check if part is the satellite of one/two math blocks. If it is, we return
// true, and save the blocks into math_blocks.
bool IsMathBlockSatellite(
ColPartition* part, GenericVector<ColPartition*>* math_blocks);
// Search the nearest neighbor of part in one vertical direction as defined in
// search_bottom. It returns the neighbor found that major x overlap with it,
// or nullptr when not found.
ColPartition* SearchNNVertical(const bool search_bottom,
const ColPartition* part);
// Check if the neighbor with vertical distance of y_gap is a near and math
// block partition.
bool IsNearMathNeighbor(const int y_gap, const ColPartition *neighbor) const;
// Generate the tiff file name for output/debug file.
void GetOutputTiffName(const char* name, STRING* image_name) const;
// Debugger function that renders ColPartitions on the input image, where:
// parts labeled as PT_EQUATION will be painted in red, PT_INLINE_EQUATION
// will be painted in green, and other parts will be painted in blue.
void PaintColParts(const STRING& outfile) const;
// Debugger function that renders the blobs in part_grid_ over the input
// image.
void PaintSpecialTexts(const STRING& outfile) const;
// Debugger function that print the math blobs density values for a
// ColPartition object.
void PrintSpecialBlobsDensity(const ColPartition* part) const;
// The tesseract engine initialized from equation training data.
Tesseract equ_tesseract_;
// The tesseract engine used for OCR. This pointer is passed in by the caller,
// so do NOT destroy it in this class.
Tesseract* lang_tesseract_;
// The ColPartitionGrid that we are processing. This pointer is passed in from
// the caller, so do NOT destroy it in the class.
ColPartitionGrid* part_grid_ = nullptr;
// A simple array of pointers to the best assigned column division at
// each grid y coordinate. This pointer is passed in from the caller, so do
// NOT destroy it in the class.
ColPartitionSet** best_columns_ = nullptr;
// The super bounding box of all cps in the part_grid_.
TBOX* cps_super_bbox_;
// The seed ColPartition for equation region.
GenericVector<ColPartition*> cp_seeds_;
// The resolution (dpi) of the processing image.
int resolution_;
// The number of pages we have processed.
int page_count_;
};
} // namespace tesseract
#endif // TESSERACT_CCMAIN_EQUATIONDETECT_H_