-
Notifications
You must be signed in to change notification settings - Fork 9.7k
/
Copy pathlanguage_model.h
418 lines (377 loc) · 19.6 KB
/
language_model.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
///////////////////////////////////////////////////////////////////////
// File: language_model.h
// Description: Functions that utilize the knowledge about the properties,
// structure and statistics of the language to help segmentation
// search.
// Author: Daria Antonova
// Created: Mon Nov 11 11:26:43 PST 2009
//
// (C) Copyright 2009, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
#ifndef TESSERACT_WORDREC_LANGUAGE_MODEL_H_
#define TESSERACT_WORDREC_LANGUAGE_MODEL_H_
#include "associate.h"
#include "dawg.h"
#include "dict.h"
#include "fontinfo.h"
#include "intproto.h"
#include "lm_consistency.h"
#include "lm_pain_points.h"
#include "lm_state.h"
#include "matrix.h"
#include "params.h"
#include "pageres.h"
#include "params_model.h"
namespace tesseract {
// This class that contains the data structures and functions necessary
// to represent and use the knowledge about the language.
class LanguageModel {
public:
// Masks for keeping track of top choices that should not be pruned out.
static const LanguageModelFlagsType kSmallestRatingFlag = 0x1;
static const LanguageModelFlagsType kLowerCaseFlag = 0x2;
static const LanguageModelFlagsType kUpperCaseFlag = 0x4;
static const LanguageModelFlagsType kDigitFlag = 0x8;
static const LanguageModelFlagsType kXhtConsistentFlag = 0x10;
// Denominator for normalizing per-letter ngram cost when deriving
// penalty adjustments.
static const float kMaxAvgNgramCost;
LanguageModel(const UnicityTable<FontInfo> *fontinfo_table, Dict *dict);
~LanguageModel();
// Fills the given floats array with features extracted from path represented
// by the given ViterbiStateEntry. See ccstruct/params_training_featdef.h
// for feature information.
// Note: the function assumes that features points to an array of size
// PTRAIN_NUM_FEATURE_TYPES.
static void ExtractFeaturesFromPath(const ViterbiStateEntry &vse,
float features[]);
// Updates data structures that are used for the duration of the segmentation
// search on the current word;
void InitForWord(const WERD_CHOICE *prev_word,
bool fixed_pitch, float max_char_wh_ratio,
float rating_cert_scale);
// Updates language model state of the given BLOB_CHOICE_LIST (from
// the ratings matrix) a its parent. Updates pain_points if new
// problematic points are found in the segmentation graph.
//
// At most language_model_viterbi_list_size are kept in each
// LanguageModelState.viterbi_state_entries list.
// At most language_model_viterbi_list_max_num_prunable of those are prunable
// (non-dictionary) paths.
// The entries that represent dictionary word paths are kept at the front
// of the list.
// The list ordered by cost that is computed collectively by several
// language model components (currently dawg and ngram components).
bool UpdateState(
bool just_classified,
int curr_col, int curr_row,
BLOB_CHOICE_LIST *curr_list,
LanguageModelState *parent_node,
LMPainPoints *pain_points,
WERD_RES *word_res,
BestChoiceBundle *best_choice_bundle,
BlamerBundle *blamer_bundle);
// Returns true if an acceptable best choice was discovered.
inline bool AcceptableChoiceFound() { return acceptable_choice_found_; }
inline void SetAcceptableChoiceFound(bool val) {
acceptable_choice_found_ = val;
}
// Returns the reference to ParamsModel.
inline ParamsModel &getParamsModel() { return params_model_; }
protected:
inline float CertaintyScore(float cert) {
if (language_model_use_sigmoidal_certainty) {
// cert is assumed to be between 0 and -dict_->certainty_scale.
// If you enable language_model_use_sigmoidal_certainty, you
// need to adjust language_model_ngram_nonmatch_score as well.
cert = -cert / dict_->certainty_scale;
return 1.0f / (1.0f + exp(10.0f * cert));
} else {
return (-1.0f / cert);
}
}
inline float ComputeAdjustment(int num_problems, float penalty) {
if (num_problems == 0) return 0.0f;
if (num_problems == 1) return penalty;
return (penalty + (language_model_penalty_increment *
static_cast<float>(num_problems-1)));
}
// Computes the adjustment to the ratings sum based on the given
// consistency_info. The paths with invalid punctuation, inconsistent
// case and character type are penalized proportionally to the number
// of inconsistencies on the path.
inline float ComputeConsistencyAdjustment(
const LanguageModelDawgInfo *dawg_info,
const LMConsistencyInfo &consistency_info) {
if (dawg_info != NULL) {
return ComputeAdjustment(consistency_info.NumInconsistentCase(),
language_model_penalty_case) +
(consistency_info.inconsistent_script ?
language_model_penalty_script : 0.0f);
}
return (ComputeAdjustment(consistency_info.NumInconsistentPunc(),
language_model_penalty_punc) +
ComputeAdjustment(consistency_info.NumInconsistentCase(),
language_model_penalty_case) +
ComputeAdjustment(consistency_info.NumInconsistentChartype(),
language_model_penalty_chartype) +
ComputeAdjustment(consistency_info.NumInconsistentSpaces(),
language_model_penalty_spacing) +
(consistency_info.inconsistent_script ?
language_model_penalty_script : 0.0f) +
(consistency_info.inconsistent_font ?
language_model_penalty_font : 0.0f));
}
// Returns an adjusted ratings sum that includes inconsistency penalties,
// penalties for non-dictionary paths and paths with dips in ngram
// probability.
float ComputeAdjustedPathCost(ViterbiStateEntry *vse);
// Finds the first lower and upper case letter and first digit in curr_list.
// Uses the first character in the list in place of empty results.
// Returns true if both alpha and digits are found.
bool GetTopLowerUpperDigit(BLOB_CHOICE_LIST *curr_list,
BLOB_CHOICE **first_lower,
BLOB_CHOICE **first_upper,
BLOB_CHOICE **first_digit) const;
// Forces there to be at least one entry in the overall set of the
// viterbi_state_entries of each element of parent_node that has the
// top_choice_flag set for lower, upper and digit using the same rules as
// GetTopLowerUpperDigit, setting the flag on the first found suitable
// candidate, whether or not the flag is set on some other parent.
// Returns 1 if both alpha and digits are found among the parents, -1 if no
// parents are found at all (a legitimate case), and 0 otherwise.
int SetTopParentLowerUpperDigit(LanguageModelState *parent_node) const;
// Finds the next ViterbiStateEntry with which the given unichar_id can
// combine sensibly, taking into account any mixed alnum/mixed case
// situation, and whether this combination has been inspected before.
ViterbiStateEntry* GetNextParentVSE(
bool just_classified, bool mixed_alnum,
const BLOB_CHOICE* bc, LanguageModelFlagsType blob_choice_flags,
const UNICHARSET& unicharset, WERD_RES* word_res,
ViterbiStateEntry_IT* vse_it,
LanguageModelFlagsType* top_choice_flags) const;
// Helper function that computes the cost of the path composed of the
// path in the given parent ViterbiStateEntry and the given BLOB_CHOICE.
// If the new path looks good enough, adds a new ViterbiStateEntry to the
// list of viterbi entries in the given BLOB_CHOICE and returns true.
bool AddViterbiStateEntry(
LanguageModelFlagsType top_choice_flags, float denom, bool word_end,
int curr_col, int curr_row, BLOB_CHOICE *b,
LanguageModelState *curr_state, ViterbiStateEntry *parent_vse,
LMPainPoints *pain_points, WERD_RES *word_res,
BestChoiceBundle *best_choice_bundle, BlamerBundle *blamer_bundle);
// Determines whether a potential entry is a true top choice and
// updates changed accordingly.
//
// Note: The function assumes that b, top_choice_flags and changed
// are not NULL.
void GenerateTopChoiceInfo(ViterbiStateEntry *new_vse,
const ViterbiStateEntry *parent_vse,
LanguageModelState *lms);
// Calls dict_->LetterIsOk() with DawgArgs initialized from parent_vse and
// unichar from b.unichar_id(). Constructs and returns LanguageModelDawgInfo
// with updated active dawgs, constraints and permuter.
//
// Note: the caller is responsible for deleting the returned pointer.
LanguageModelDawgInfo *GenerateDawgInfo(bool word_end,
int curr_col, int curr_row,
const BLOB_CHOICE &b,
const ViterbiStateEntry *parent_vse);
// Computes p(unichar | parent context) and records it in ngram_cost.
// If b.unichar_id() is an unlikely continuation of the parent context
// sets found_small_prob to true and returns NULL.
// Otherwise creates a new LanguageModelNgramInfo entry containing the
// updated context (that includes b.unichar_id() at the end) and returns it.
//
// Note: the caller is responsible for deleting the returned pointer.
LanguageModelNgramInfo *GenerateNgramInfo(
const char *unichar, float certainty, float denom,
int curr_col, int curr_row, float outline_length,
const ViterbiStateEntry *parent_vse);
// Computes -(log(prob(classifier)) + log(prob(ngram model)))
// for the given unichar in the given context. If there are multiple
// unichars at one position - takes the average of their probabilities.
// UNICHAR::utf8_step() is used to separate out individual UTF8 characters,
// since probability_in_context() can only handle one at a time (while
// unicharset might contain ngrams and glyphs composed from multiple UTF8
// characters).
float ComputeNgramCost(const char *unichar, float certainty, float denom,
const char *context, int *unichar_step_len,
bool *found_small_prob, float *ngram_prob);
// Computes the normalization factors for the classifier confidences
// (used by ComputeNgramCost()).
float ComputeDenom(BLOB_CHOICE_LIST *curr_list);
// Fills the given consistenty_info based on parent_vse.consistency_info
// and on the consistency of the given unichar_id with parent_vse.
void FillConsistencyInfo(
int curr_col, bool word_end, BLOB_CHOICE *b,
ViterbiStateEntry *parent_vse,
WERD_RES *word_res,
LMConsistencyInfo *consistency_info);
// Constructs WERD_CHOICE by recording unichar_ids of the BLOB_CHOICEs
// on the path represented by the given BLOB_CHOICE and language model
// state entries (lmse, dse). The path is re-constructed by following
// the parent pointers in the the lang model state entries). If the
// constructed WERD_CHOICE is better than the best/raw choice recorded
// in the best_choice_bundle, this function updates the corresponding
// fields and sets best_choice_bunldle->updated to true.
void UpdateBestChoice(ViterbiStateEntry *vse,
LMPainPoints *pain_points,
WERD_RES *word_res,
BestChoiceBundle *best_choice_bundle,
BlamerBundle *blamer_bundle);
// Constructs a WERD_CHOICE by tracing parent pointers starting with
// the given LanguageModelStateEntry. Returns the constructed word.
// Updates best_char_choices, certainties and state if they are not
// NULL (best_char_choices and certainties are assumed to have the
// length equal to lmse->length).
// The caller is responsible for freeing memory associated with the
// returned WERD_CHOICE.
WERD_CHOICE *ConstructWord(ViterbiStateEntry *vse,
WERD_RES *word_res,
DANGERR *fixpt,
BlamerBundle *blamer_bundle,
bool *truth_path);
// Wrapper around AssociateUtils::ComputeStats().
inline void ComputeAssociateStats(int col, int row,
float max_char_wh_ratio,
ViterbiStateEntry *parent_vse,
WERD_RES *word_res,
AssociateStats *associate_stats) {
AssociateUtils::ComputeStats(
col, row,
(parent_vse != NULL) ? &(parent_vse->associate_stats) : NULL,
(parent_vse != NULL) ? parent_vse->length : 0,
fixed_pitch_, max_char_wh_ratio,
word_res, language_model_debug_level > 2, associate_stats);
}
// Returns true if the path with such top_choice_flags and dawg_info
// could be pruned out (i.e. is neither a system/user/frequent dictionary
// nor a top choice path).
// In non-space delimited languages all paths can be "somewhat" dictionary
// words. In such languages we can not do dictionary-driven path pruning,
// so paths with non-empty dawg_info are considered prunable.
inline bool PrunablePath(const ViterbiStateEntry &vse) {
if (vse.top_choice_flags) return false;
if (vse.dawg_info != NULL &&
(vse.dawg_info->permuter == SYSTEM_DAWG_PERM ||
vse.dawg_info->permuter == USER_DAWG_PERM ||
vse.dawg_info->permuter == FREQ_DAWG_PERM)) return false;
return true;
}
// Returns true if the given ViterbiStateEntry represents an acceptable path.
inline bool AcceptablePath(const ViterbiStateEntry &vse) {
return (vse.dawg_info != NULL || vse.Consistent() ||
(vse.ngram_info != NULL && !vse.ngram_info->pruned));
}
public:
// Parameters.
INT_VAR_H(language_model_debug_level, 0, "Language model debug level");
BOOL_VAR_H(language_model_ngram_on, false,
"Turn on/off the use of character ngram model");
INT_VAR_H(language_model_ngram_order, 8,
"Maximum order of the character ngram model");
INT_VAR_H(language_model_viterbi_list_max_num_prunable, 10,
"Maximum number of prunable (those for which PrunablePath() is"
" true) entries in each viterbi list recorded in BLOB_CHOICEs");
INT_VAR_H(language_model_viterbi_list_max_size, 500,
"Maximum size of viterbi lists recorded in BLOB_CHOICEs");
double_VAR_H(language_model_ngram_small_prob, 0.000001,
"To avoid overly small denominators use this as the floor"
" of the probability returned by the ngram model");
double_VAR_H(language_model_ngram_nonmatch_score, -40.0,
"Average classifier score of a non-matching unichar");
BOOL_VAR_H(language_model_ngram_use_only_first_uft8_step, false,
"Use only the first UTF8 step of the given string"
" when computing log probabilities");
double_VAR_H(language_model_ngram_scale_factor, 0.03,
"Strength of the character ngram model relative to the"
" character classifier ");
double_VAR_H(language_model_ngram_rating_factor, 16.0,
"Factor to bring log-probs into the same range as ratings"
" when multiplied by outline length ");
BOOL_VAR_H(language_model_ngram_space_delimited_language, true,
"Words are delimited by space");
INT_VAR_H(language_model_min_compound_length, 3,
"Minimum length of compound words");
// Penalties used for adjusting path costs and final word rating.
double_VAR_H(language_model_penalty_non_freq_dict_word, 0.1,
"Penalty for words not in the frequent word dictionary");
double_VAR_H(language_model_penalty_non_dict_word, 0.15,
"Penalty for non-dictionary words");
double_VAR_H(language_model_penalty_punc, 0.2,
"Penalty for inconsistent punctuation");
double_VAR_H(language_model_penalty_case, 0.1,
"Penalty for inconsistent case");
double_VAR_H(language_model_penalty_script, 0.5,
"Penalty for inconsistent script");
double_VAR_H(language_model_penalty_chartype, 0.3,
"Penalty for inconsistent character type");
double_VAR_H(language_model_penalty_font, 0.00,
"Penalty for inconsistent font");
double_VAR_H(language_model_penalty_spacing, 0.05,
"Penalty for inconsistent spacing");
double_VAR_H(language_model_penalty_increment, 0.01, "Penalty increment");
INT_VAR_H(wordrec_display_segmentations, 0, "Display Segmentations");
BOOL_VAR_H(language_model_use_sigmoidal_certainty, false,
"Use sigmoidal score for certainty");
protected:
// Member Variables.
// Temporary DawgArgs struct that is re-used across different words to
// avoid dynamic memory re-allocation (should be cleared before each use).
DawgArgs dawg_args_;
// Scaling for recovering blob outline length from rating and certainty.
float rating_cert_scale_;
// The following variables are set at construction time.
// Pointer to fontinfo table (not owned by LanguageModel).
const UnicityTable<FontInfo> *fontinfo_table_;
// Pointer to Dict class, that is used for querying the dictionaries
// (the pointer is not owned by LanguageModel).
Dict *dict_;
// TODO(daria): the following variables should become LanguageModel params
// when the old code in bestfirst.cpp and heuristic.cpp is deprecated.
//
// Set to true if we are dealing with fixed pitch text
// (set to assume_fixed_pitch_char_segment).
bool fixed_pitch_;
// Max char width-to-height ratio allowed
// (set to segsearch_max_char_wh_ratio).
float max_char_wh_ratio_;
// The following variables are initialized with InitForWord().
// String representation of the classification of the previous word
// (since this is only used by the character ngram model component,
// only the last language_model_ngram_order of the word are stored).
STRING prev_word_str_;
int prev_word_unichar_step_len_;
// Active dawg vector.
DawgPositionVector very_beginning_active_dawgs_; // includes continuation
DawgPositionVector beginning_active_dawgs_;
// Set to true if acceptable choice was discovered.
// Note: it would be nice to use this to terminate the search once an
// acceptable choices is found. However we do not do that and once an
// acceptable choice is found we finish looking for alternative choices
// in the current segmentation graph and then exit the search (no more
// classifications are done after an acceptable choice is found).
// This is needed in order to let the search find the words very close to
// the best choice in rating (e.g. what/What, Cat/cat, etc) and log these
// choices. This way the stopper will know that the best choice is not
// ambiguous (i.e. there are best choices in the best choice list that have
// ratings close to the very best one) and will be less likely to mis-adapt.
bool acceptable_choice_found_;
// Set to true if a choice representing correct segmentation was explored.
bool correct_segmentation_explored_;
// Params models containing weights for for computing ViterbiStateEntry costs.
ParamsModel params_model_;
};
} // namespace tesseract
#endif // TESSERACT_WORDREC_LANGUAGE_MODEL_H_