-
Notifications
You must be signed in to change notification settings - Fork 445
/
AbstractModel.js
397 lines (272 loc) · 6.93 KB
/
AbstractModel.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
/**
* @author syt123450 / https://github.com/syt123450
* @author zchholmes / https://github.com/zchholmes
*/
import * as THREE from "three";
import { TfjsLoader } from '../loader/TfjsLoader';
import { KerasLoader } from "../loader/KerasLoader";
import { TfLoader } from "../loader/TfLoader";
import { LiveLoader } from "../loader/LiveLoader";
import { ModelConfiguration } from "../configure/ModelConfiguration";
import { HTMLUtils } from '../utils/HTMLUtils';
/**
* AbstractModel, abstract model, should not be initialized directly.
* Base class for Sequential, Model
*
* @param container, a DOM element where TSP model will be rendered to.
* @param config, user's config for model.
* @constructor
*/
function AbstractModel( container, config ) {
/**
* TensorSpace Model will be rendered in this HTML Dom element.
*
* @type { HTMLElement }
*/
this.container = undefined;
/**
* Store loader.
* Four kinds of loader: TfLoader, TfjsLoader, KerasLoader, LiveLoader.
*
* @type { Loader }
*/
this.loader = undefined;
/**
* Sign showing whether model has a preload loader.
* true -- has a preload loader
* false -- empty model, do not have a preload loader
*
* @type { boolean }
*/
this.hasLoader = false;
/**
* Whether model has loaded a prediction model.
* true -- A loader has already load a prediction to TSP model
* false -- Empty model, do not have a prediction for prediction
*
* @type { boolean }
*/
this.isInitialized = false;
/**
* Actual prediction model.
* undefined means no prediction model.
*
* @type { model }
*/
this.resource = undefined;
/**
* Store user's input value for prediction.
*
* @type { Array }
*/
this.inputValue = undefined;
/**
* Store prediction result from prediction model.
*
* @type { undefined }
*/
this.predictResult = undefined;
/**
* Used to trigger model prediction and get predict result
*
* @type { Predictor }
*/
this.predictor = undefined;
/**
* Prediction model type.
* Two types now: "Model", "Sequential"
*
* @type { string }
*/
this.modelType = undefined;
/**
* Store all layers in Model.
*
* @type { Layer[] }
*/
this.layers = [];
/**
* Model's depth in visualization.
*
* @type { Int }
*/
this.depth = undefined;
/**
* Model configuration.
* Initialized with user's model config and default model config.
*
* @type { ModelConfiguration }
*/
this.configuration = undefined;
/**
* Model's context, containing all THREE.Object for a TSP model.
*
* @type { THREE.Object }
*/
this.modelContext = new THREE.Object3D();
this.loadConfiguration( container, config );
}
AbstractModel.prototype = {
loadConfiguration: function( args1, args2 ) {
if ( HTMLUtils.isElement( args1 ) ) {
this.container = args1;
this.configuration = new ModelConfiguration( args2 );
} else {
this.configuration = new ModelConfiguration( args1 );
}
},
/**
* load(), load prediction model based on "type" attribute in user's configuration.
*
* @param config
*/
load: function( config ) {
if ( config.type === "tfjs" ) {
this.loadTfjsModel( config );
} else if ( config.type === "keras" ) {
this.loadKerasModel( config );
} else if ( config.type === "tensorflow" ) {
this.loadTfModel( config );
} else if ( config.type = "live" ) {
this.loadLiveModel( config );
} else {
console.error( "Do not support to load model type " + config.type );
}
},
/**
* loadTfjsModel(), create TFJSLoader and execute preLoad.
*
* @param config, user's config for TfjsLoader.
*/
loadTfjsModel: function( config ) {
let loader = new TfjsLoader( this, config );
loader.preLoad();
},
/**
* loadKerasModel(), create KerasLoader and execute preLoad.
*
* @param config, user's config for KerasLoader.
*/
loadKerasModel: function( config ) {
let loader = new KerasLoader( this, config );
loader.preLoad();
},
/**
* loadTfModel(), create TfLoader and execute preLoad.
*
* @param config, user's config for TfLoader.
*/
loadTfModel: function( config ) {
let loader = new TfLoader( this, config );
loader.preLoad();
},
loadLiveModel: function( config ) {
let loader = new LiveLoader( this, config );
loader.preLoad();
},
/**
* Store loader.
*
* @param loader
*/
setLoader: function( loader ) {
this.loader = loader;
},
/**
* Get TSP layer stored in model by name.
*
* @param name
* @return { Layer }, layer with given name.
*/
getLayerByName: function( name ) {
for ( let i = 0; i < this.layers.length; i ++ ) {
if ( this.layers[ i ].name === name ) {
return this.layers[ i ];
}
}
},
/**
* Get all TSP layer stored in model.
*
* @return { Layer[] }, layer list.
*/
getAllLayers: function() {
return this.layers;
},
/**
* return Actual prediction model,
* Developer can directly manipulate the model,
* for example, get model summary, make predictions.
*/
getPredictionModel: function() {
return this.resource;
},
/**
* init(), Init model,
* As TSP is applying lazy initialization strategy, time-consuming work will be done in this process.
* After init process, the model will be rendered onto container.
*
* @param callback, user's predefined callback function, fired when init process completed.
*/
init: function( callback ) {
if ( this.hasLoader ) {
// If has a predefined loader, load model before init sequential elements.
let self = this;
this.loader.load().then( function() {
// Init sequential elements.
self.initTSPModel();
// Execute callback at the end if callback function is predefined.
if ( callback !== undefined ) {
callback();
}
} );
} else {
// Init sequential elements.
this.initTSPModel();
// Execute callback at the end if callback function is predefined.
if ( callback !== undefined ) {
callback();
}
}
},
/**
* ============
*
* Functions below are abstract method for Layer.
* SubClasses ( specific Model ) override these abstract methods.
*
* ============
*/
/**
* predict(), abstract method
*
* Generates output predictions for the input sample.
*
* @param input, user's input data
* @param callback, user' predefined callback function, execute after prediction.
*/
predict: function( input, callback ) {
},
/**
* clear(), abstract method
*
* Override to clear all layers' visualization and model's input data.
*/
clear: function() {
},
/**
* reset(), abstract method
*
* Override to add reset model.
*/
reset: function() {
},
/**
* initTSPModel(), abstract method
*
* Override to handle actual element creation.
*/
initTSPModel: function() {
}
};
export { AbstractModel };