|
| 1 | +# coding=utf-8 |
| 2 | +# Copyright 2019 The Tensor2Tensor Authors. |
| 3 | +# |
| 4 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | +# you may not use this file except in compliance with the License. |
| 6 | +# You may obtain a copy of the License at |
| 7 | +# |
| 8 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | +# |
| 10 | +# Unless required by applicable law or agreed to in writing, software |
| 11 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | +# See the License for the specific language governing permissions and |
| 14 | +# limitations under the License. |
| 15 | + |
| 16 | +"""Moving MNIST dataset. |
| 17 | +
|
| 18 | +Unsupervised Learning of Video Representations using LSTMs |
| 19 | +Nitish Srivastava, Elman Mansimov, Ruslan Salakhutdinov |
| 20 | +https://arxiv.org/abs/1502.04681 |
| 21 | +
|
| 22 | +""" |
| 23 | + |
| 24 | +from __future__ import absolute_import |
| 25 | +from __future__ import division |
| 26 | +from __future__ import print_function |
| 27 | + |
| 28 | +import os |
| 29 | +import numpy as np |
| 30 | + |
| 31 | +from tensor2tensor.data_generators import generator_utils |
| 32 | +from tensor2tensor.data_generators import problem |
| 33 | +from tensor2tensor.data_generators import video_utils |
| 34 | +from tensor2tensor.layers import modalities |
| 35 | +from tensor2tensor.utils import registry |
| 36 | + |
| 37 | +import tensorflow as tf |
| 38 | +import tensorflow_datasets as tfds |
| 39 | +from tensorflow_datasets.video import moving_sequence |
| 40 | + |
| 41 | + |
| 42 | +DATA_URL = ( |
| 43 | + "http://www.cs.toronto.edu/~nitish/unsupervised_video/mnist_test_seq.npy") |
| 44 | +SPLIT_TO_SIZE = { |
| 45 | + problem.DatasetSplit.TRAIN: 100000, |
| 46 | + problem.DatasetSplit.EVAL: 10000, |
| 47 | + problem.DatasetSplit.TEST: 10000} |
| 48 | + |
| 49 | + |
| 50 | +@registry.register_problem |
| 51 | +class VideoMovingMnist(video_utils.VideoProblem): |
| 52 | + """MovingMnist Dataset.""" |
| 53 | + |
| 54 | + @property |
| 55 | + def num_channels(self): |
| 56 | + return 1 |
| 57 | + |
| 58 | + @property |
| 59 | + def frame_height(self): |
| 60 | + return 64 |
| 61 | + |
| 62 | + @property |
| 63 | + def frame_width(self): |
| 64 | + return 64 |
| 65 | + |
| 66 | + @property |
| 67 | + def is_generate_per_split(self): |
| 68 | + return True |
| 69 | + |
| 70 | + # num_videos * num_frames |
| 71 | + @property |
| 72 | + def total_number_of_frames(self): |
| 73 | + return 100000 * 20 |
| 74 | + |
| 75 | + def max_frames_per_video(self, hparams): |
| 76 | + return 20 |
| 77 | + |
| 78 | + @property |
| 79 | + def random_skip(self): |
| 80 | + return False |
| 81 | + |
| 82 | + def eval_metrics(self): |
| 83 | + return [] |
| 84 | + |
| 85 | + @property |
| 86 | + def dataset_splits(self): |
| 87 | + """Splits of data to produce and number of output shards for each.""" |
| 88 | + return [ |
| 89 | + {"split": problem.DatasetSplit.TRAIN, "shards": 10}, |
| 90 | + {"split": problem.DatasetSplit.EVAL, "shards": 1}, |
| 91 | + {"split": problem.DatasetSplit.TEST, "shards": 1}] |
| 92 | + |
| 93 | + @property |
| 94 | + def extra_reading_spec(self): |
| 95 | + """Additional data fields to store on disk and their decoders.""" |
| 96 | + data_fields = { |
| 97 | + "frame_number": tf.FixedLenFeature([1], tf.int64), |
| 98 | + } |
| 99 | + decoders = { |
| 100 | + "frame_number": tf.contrib.slim.tfexample_decoder.Tensor( |
| 101 | + tensor_key="frame_number"), |
| 102 | + } |
| 103 | + return data_fields, decoders |
| 104 | + |
| 105 | + def hparams(self, defaults, unused_model_hparams): |
| 106 | + p = defaults |
| 107 | + p.modality = {"inputs": modalities.ModalityType.VIDEO, |
| 108 | + "targets": modalities.ModalityType.VIDEO} |
| 109 | + p.vocab_size = {"inputs": 256, |
| 110 | + "targets": 256} |
| 111 | + |
| 112 | + def get_test_iterator(self, tmp_dir): |
| 113 | + path = generator_utils.maybe_download( |
| 114 | + tmp_dir, os.path.basename(DATA_URL), DATA_URL) |
| 115 | + with tf.io.gfile.GFile(path, "rb") as fp: |
| 116 | + mnist_test = np.load(fp) |
| 117 | + mnist_test = np.transpose(mnist_test, (1, 0, 2, 3)) |
| 118 | + mnist_test = np.expand_dims(mnist_test, axis=-1) |
| 119 | + mnist_test = tf.data.Dataset.from_tensor_slices(mnist_test) |
| 120 | + return mnist_test.make_initializable_iterator() |
| 121 | + |
| 122 | + def map_fn(self, image, label): |
| 123 | + sequence = moving_sequence.image_as_moving_sequence( |
| 124 | + image, sequence_length=20) |
| 125 | + return sequence.image_sequence |
| 126 | + |
| 127 | + def get_train_iterator(self): |
| 128 | + mnist_ds = tfds.load("mnist", split=tfds.Split.TRAIN, as_supervised=True) |
| 129 | + mnist_ds = mnist_ds.repeat() |
| 130 | + moving_mnist_ds = mnist_ds.map(self.map_fn).batch(2) |
| 131 | + moving_mnist_ds = moving_mnist_ds.map(lambda x: tf.reduce_max(x, axis=0)) |
| 132 | + return moving_mnist_ds.make_initializable_iterator() |
| 133 | + |
| 134 | + def generate_samples(self, data_dir, tmp_dir, dataset_split): |
| 135 | + with tf.Graph().as_default(): |
| 136 | + # train and eval set are generated on-the-fly. |
| 137 | + # test set is the official test-set. |
| 138 | + if dataset_split == problem.DatasetSplit.TEST: |
| 139 | + moving_ds = self.get_test_iterator(tmp_dir) |
| 140 | + else: |
| 141 | + moving_ds = self.get_train_iterator() |
| 142 | + |
| 143 | + next_video = moving_ds.get_next() |
| 144 | + with tf.Session() as sess: |
| 145 | + sess.run(moving_ds.initializer) |
| 146 | + |
| 147 | + n_samples = SPLIT_TO_SIZE[dataset_split] |
| 148 | + for _ in range(n_samples): |
| 149 | + next_video_np = sess.run(next_video) |
| 150 | + for frame_number, frame in enumerate(next_video_np): |
| 151 | + yield { |
| 152 | + "frame_number": [frame_number], |
| 153 | + "frame": frame, |
| 154 | + } |
0 commit comments