Skip to content

checkerboard artifacts by using tfpl.IndependentNormal in decoder #593

Open
@mastaer

Description

@mastaer

TF: 2.0.0
TFP version: 0.8.0

Hi,
I want to write a VAE with Tensorflow-Probability. If I use tfpl.IndependentNormal at the end of the decoder, I get checkerboard artifacts. If I use instead tfd.Independent(tfd.Normal(...)) it works fine.

To show you what I mean, you can find the code here:

import tensorflow as tf
from tensorflow.keras import layers as tfl
import numpy as np
from tensorflow_probability import layers as tfpl
from tensorflow_probability import distributions as tfd
import matplotlib.pyplot as plt

# basic model
decoder = tf.keras.models.Sequential()
decoder.add(tfl.InputLayer(input_shape=[10]))
decoder.add(tfl.Reshape([1, 1, 10]))
decoder.add(tfl.UpSampling2D((2,2)))
decoder.add(tfl.Conv2D(100,(3,3),activation='selu',padding='same'))
decoder.add(tfl.UpSampling2D((2,2)))
decoder.add(tfl.Conv2D(100,(3,3),activation='selu',padding='same'))
decoder.add(tfl.UpSampling2D((2,2)))
decoder.add(tfl.Conv2D(100,(3,3),activation='selu',padding='same'))
decoder.add(tfl.UpSampling2D((2,2)))
decoder.add(tfl.Conv2D(100,(3,3),activation='selu',padding='same'))
decoder.add(tfl.UpSampling2D((2,2)))

plt.figure(figsize=(17,17))

# test input
input_values = np.array(np.random.random((1,10)),dtype=np.float32)

# 1. version: Pure TF.Conv-Layer
decoder1 = tf.keras.models.Sequential(decoder)
decoder1.add(tfl.Conv2D(1,(3,3),activation='selu',padding='same'))
plt.subplot(1,4,1)
plt.imshow(decoder1(input_values)[0,:,:,0])
plt.title('Pure TF.Conv-Layer')

# 2. version: Using tfpl.IndependentNormal
decoder2 = tf.keras.models.Sequential(decoder)
decoder2.add(tfl.Conv2D(2,(3,3),padding='same'))
decoder2.add(tfl.Flatten())
decoder2.add(tfpl.IndependentNormal((32,32,1)))
plt.subplot(1,4,2)
plt.imshow(decoder2(input_values).mean()[0,:,:,0])
plt.title('tfpl.IndependentNormal')

# 3. version: Using tfd.Independent(tfd.Normal(...))
plt.subplot(1,4,3)
plt.imshow(tfd.Independent(tfd.Normal(decoder1(input_values),decoder1(input_values)), 2).mean()[0,:,:,0])
plt.title('tfd.Independent(tfd.Normal(...))')

# 4. version: Using tfd.Independent(tfd.Normal(...)) in tfpl.DistributionLambda
def IndependentConvNormal():
    return tfpl.DistributionLambda(
            make_distribution_fn=lambda t:
                tfd.Independent(
                    tfd.Normal(
                            loc=t[...,:1],
                            scale=tf.exp(t[...,1:]))))
decoder3 = tf.keras.models.Sequential(decoder)
decoder3.add(tfl.Conv2D(2,(3,3),padding='same'))
decoder3.add(IndependentConvNormal())
plt.subplot(1,4,4)
plt.imshow(decoder3(input_values).mean()[0,:,:,0])
plt.title('tfd.Independent(tfd.Normal(...))\nin tfpl.DistributionLambda')

plt.show()

Screenshot from 2019-10-09 14-42-50

Thanks for your help! :)

Activity

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions