-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
proof.go
239 lines (218 loc) · 7.07 KB
/
proof.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
package merkle
import (
"bytes"
"errors"
"fmt"
"github.com/tendermint/tendermint/crypto"
tmcrypto "github.com/tendermint/tendermint/proto/tendermint/crypto"
)
const (
// MaxAunts is the maximum number of aunts that can be included in a Proof.
// This corresponds to a tree of size 2^100, which should be sufficient for all conceivable purposes.
// This maximum helps prevent Denial-of-Service attacks by limitting the size of the proofs.
MaxAunts = 100
)
// Proof represents a Merkle proof.
// NOTE: The convention for proofs is to include leaf hashes but to
// exclude the root hash.
// This convention is implemented across IAVL range proofs as well.
// Keep this consistent unless there's a very good reason to change
// everything. This also affects the generalized proof system as
// well.
type Proof struct {
Total int64 `json:"total,string"` // Total number of items.
Index int64 `json:"index,string"` // Index of item to prove.
LeafHash []byte `json:"leaf_hash"` // Hash of item value.
Aunts [][]byte `json:"aunts"` // Hashes from leaf's sibling to a root's child.
}
// ProofsFromByteSlices computes inclusion proof for given items.
// proofs[0] is the proof for items[0].
func ProofsFromByteSlices(items [][]byte) (rootHash []byte, proofs []*Proof) {
trails, rootSPN := trailsFromByteSlices(items)
rootHash = rootSPN.Hash
proofs = make([]*Proof, len(items))
for i, trail := range trails {
proofs[i] = &Proof{
Total: int64(len(items)),
Index: int64(i),
LeafHash: trail.Hash,
Aunts: trail.FlattenAunts(),
}
}
return
}
// Verify that the Proof proves the root hash.
// Check sp.Index/sp.Total manually if needed
func (sp *Proof) Verify(rootHash []byte, leaf []byte) error {
if sp.Total < 0 {
return errors.New("proof total must be positive")
}
if sp.Index < 0 {
return errors.New("proof index cannot be negative")
}
leafHash := leafHash(leaf)
if !bytes.Equal(sp.LeafHash, leafHash) {
return fmt.Errorf("invalid leaf hash: wanted %X got %X", leafHash, sp.LeafHash)
}
computedHash := sp.ComputeRootHash()
if !bytes.Equal(computedHash, rootHash) {
return fmt.Errorf("invalid root hash: wanted %X got %X", rootHash, computedHash)
}
return nil
}
// Compute the root hash given a leaf hash. Does not verify the result.
func (sp *Proof) ComputeRootHash() []byte {
return computeHashFromAunts(
sp.Index,
sp.Total,
sp.LeafHash,
sp.Aunts,
)
}
// String implements the stringer interface for Proof.
// It is a wrapper around StringIndented.
func (sp *Proof) String() string {
return sp.StringIndented("")
}
// StringIndented generates a canonical string representation of a Proof.
func (sp *Proof) StringIndented(indent string) string {
return fmt.Sprintf(`Proof{
%s Aunts: %X
%s}`,
indent, sp.Aunts,
indent)
}
// ValidateBasic performs basic validation.
// NOTE: it expects the LeafHash and the elements of Aunts to be of size tmhash.Size,
// and it expects at most MaxAunts elements in Aunts.
func (sp *Proof) ValidateBasic() error {
if sp.Total < 0 {
return errors.New("negative Total")
}
if sp.Index < 0 {
return errors.New("negative Index")
}
if len(sp.LeafHash) != crypto.HashSize {
return fmt.Errorf("expected LeafHash size to be %d, got %d", crypto.HashSize, len(sp.LeafHash))
}
if len(sp.Aunts) > MaxAunts {
return fmt.Errorf("expected no more than %d aunts, got %d", MaxAunts, len(sp.Aunts))
}
for i, auntHash := range sp.Aunts {
if len(auntHash) != crypto.HashSize {
return fmt.Errorf("expected Aunts#%d size to be %d, got %d", i, crypto.HashSize, len(auntHash))
}
}
return nil
}
func (sp *Proof) ToProto() *tmcrypto.Proof {
if sp == nil {
return nil
}
pb := new(tmcrypto.Proof)
pb.Total = sp.Total
pb.Index = sp.Index
pb.LeafHash = sp.LeafHash
pb.Aunts = sp.Aunts
return pb
}
func ProofFromProto(pb *tmcrypto.Proof) (*Proof, error) {
if pb == nil {
return nil, errors.New("nil proof")
}
sp := new(Proof)
sp.Total = pb.Total
sp.Index = pb.Index
sp.LeafHash = pb.LeafHash
sp.Aunts = pb.Aunts
return sp, sp.ValidateBasic()
}
// Use the leafHash and innerHashes to get the root merkle hash.
// If the length of the innerHashes slice isn't exactly correct, the result is nil.
// Recursive impl.
func computeHashFromAunts(index, total int64, leafHash []byte, innerHashes [][]byte) []byte {
if index >= total || index < 0 || total <= 0 {
return nil
}
switch total {
case 0:
panic("Cannot call computeHashFromAunts() with 0 total")
case 1:
if len(innerHashes) != 0 {
return nil
}
return leafHash
default:
if len(innerHashes) == 0 {
return nil
}
numLeft := getSplitPoint(total)
if index < numLeft {
leftHash := computeHashFromAunts(index, numLeft, leafHash, innerHashes[:len(innerHashes)-1])
if leftHash == nil {
return nil
}
return innerHash(leftHash, innerHashes[len(innerHashes)-1])
}
rightHash := computeHashFromAunts(index-numLeft, total-numLeft, leafHash, innerHashes[:len(innerHashes)-1])
if rightHash == nil {
return nil
}
return innerHash(innerHashes[len(innerHashes)-1], rightHash)
}
}
// ProofNode is a helper structure to construct merkle proof.
// The node and the tree is thrown away afterwards.
// Exactly one of node.Left and node.Right is nil, unless node is the root, in which case both are nil.
// node.Parent.Hash = hash(node.Hash, node.Right.Hash) or
// hash(node.Left.Hash, node.Hash), depending on whether node is a left/right child.
type ProofNode struct {
Hash []byte
Parent *ProofNode
Left *ProofNode // Left sibling (only one of Left,Right is set)
Right *ProofNode // Right sibling (only one of Left,Right is set)
}
// FlattenAunts will return the inner hashes for the item corresponding to the leaf,
// starting from a leaf ProofNode.
func (spn *ProofNode) FlattenAunts() [][]byte {
// Nonrecursive impl.
innerHashes := [][]byte{}
for spn != nil {
switch {
case spn.Left != nil:
innerHashes = append(innerHashes, spn.Left.Hash)
case spn.Right != nil:
innerHashes = append(innerHashes, spn.Right.Hash)
default:
// FIXME(fromberger): Per the documentation above, exactly one of
// these fields should be set. If that is true, this should probably
// be a panic since it violates the invariant. If not, when can it
// be OK to have no siblings? Does this occur at the leaves?
}
spn = spn.Parent
}
return innerHashes
}
// trails[0].Hash is the leaf hash for items[0].
// trails[i].Parent.Parent....Parent == root for all i.
func trailsFromByteSlices(items [][]byte) (trails []*ProofNode, root *ProofNode) {
// Recursive impl.
switch len(items) {
case 0:
return []*ProofNode{}, &ProofNode{emptyHash(), nil, nil, nil}
case 1:
trail := &ProofNode{leafHash(items[0]), nil, nil, nil}
return []*ProofNode{trail}, trail
default:
k := getSplitPoint(int64(len(items)))
lefts, leftRoot := trailsFromByteSlices(items[:k])
rights, rightRoot := trailsFromByteSlices(items[k:])
rootHash := innerHash(leftRoot.Hash, rightRoot.Hash)
root := &ProofNode{rootHash, nil, nil, nil}
leftRoot.Parent = root
leftRoot.Right = rightRoot
rightRoot.Parent = root
rightRoot.Left = leftRoot
return append(lefts, rights...), root
}
}