-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun.sh
executable file
·122 lines (93 loc) · 4.56 KB
/
run.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# Required python modules
# - - - - - - - - - - - -
# pip3 install --upgrade --no-deps git+https://github.com/dlsys10714/mugrade.git
# pip3 install pytest numpy numdifftools pybind11 requests
# Train and test cifar10
# - - - - - - - - - - -
# cd apps
# KIM_BACKEND=cuda python3 cifar10.py
# Common tests for a specific backend
# - - - - - - - - - - - - - - - - - -
# KIM_BACKEND=nd KIM_DEVICE=cuda_triton ./tests.sh
# KIM_BACKEND=nd KIM_DEVICE=cuda ./tests.sh
# KIM_BACKEND=nd KIM_DEVICE=cpu ./tests.sh
# KIM_BACKEND=nd KIM_DEVICE=cpu_numpy ./tests.sh
# KIM_BACKEND=np ./tests.sh
# Heavy tests
# - - - - - -
# python3 -m pytest tests/test_simple_nn.py \
# tests/test_data.py tests/test_cifar_ptb_data.py tests/test_mlp_resnet.py
#######
# hw4 #
#######
BACKEND_DEVICE=cuda python3 -m mugrade submit _r1VOvEAgPZvLXFJ18agr -k "resnet9"
python3 -m mugrade submit _r1VOvEAgPZvLXFJ18agr -k "rnn"
python3 -m pytest -k "test_rnn and relu and cpu"
python3 -m mugrade submit _r1VOvEAgPZvLXFJ18agr -k "lstm"
python3 -m pytest -k "lstm_cell and cpu-False-False-12-1-15"
python3 -m pytest -k "test_lstm[cuda-False-False-12-11-15-2-13]"
python3 -m pytest -k "test_lstm"
python3 -m pytest -k "test_lstm[cuda-True-True-1-1-1-1-13]" # bị hang
python3 -m mugrade submit _r1VOvEAgPZvLXFJ18agr -k "ptb"
python3 -m pytest -l -v -k "ptb_dataset"
python3 -m mugrade submit _r1VOvEAgPZvLXFJ18agr -k "language_model"
python3 -m pytest -l -v -k "language_model_implementation"
python3 -m pytest -l -v -k "language_model_training"
KIM_DEVICE=cuda python3 -m pytest tests/test_sequence_models.py -k "test_rnn and cuda-relu-False-False-12-11-15-2-13"
KIM_DEVICE=cuda python3 -m pytest tests/test_sequence_models.py -k "test_rnn"
python3 -m pytest tests/test_sequence_models.py
# DONE
# python3 -m pytest tests/test_conv.py
# python3 -m pytest tests/test_nd_backend.py
# python3 -m pytest tests/test_cifar_ptb_data.py
# python3 -m pytest tests/test_sequence_models.py -k "rnn_cell"
# python3 -m mugrade submit _r1VOvEAgPZvLXFJ18agr -k "new_nd_backend"
# python3 -m mugrade submit _r1VOvEAgPZvLXFJ18agr -k "conv_forward"
# python3 -m mugrade submit _r1VOvEAgPZvLXFJ18agr -k "conv_backward"
# python3 -m mugrade submit _r1VOvEAgPZvLXFJ18agr -k "cifar10"
# python3 -m mugrade submit _r1VOvEAgPZvLXFJ18agr -k "new_ops"
# https://github.com/dlsyscourse/hw4/blob/main/hw4.ipynb
# https://github.com/dlsyscourse/public_notebooks/blob/main/convolution_implementation.ipynb
# https://github.com/dlsyscourse/public_notebooks/blob/main/rnn_implementation.ipynb
# https://youtu.be/7kclgMIcMq0?t=2354 => conv via matmul
#######
# hw3 #
#######
# https://colab.research.google.com/drive/1dnXj1U2DWtnaHanFoYa7XODKUDIjcl_6
# https://colab.research.google.com/drive/1DjW7RRF3chDfkp8LcDJCyQB8Bd11nCZ0
# python3 -m pytest tests/test_ndarray.py -v -k "(permute or reshape or broadcast or getitem) and cpu and not compact"
# python3 -m mugrade submit _r1VOvEAgPZvLXFJ18agr tests/hw3_submit.py -k "python_ops"
# make && python3 -m pytest -v -k "(compact or setitem) and cpu"
# python3 -m mugrade submit _r1VOvEAgPZvLXFJ18agr tests/hw3_submit.py -k "cpu_compact_setitem"
# make && python3 -m pytest -v -k "(ewise_fn or ewise_max or log or exp or tanh or (scalar and not setitem)) and cpu"
# python3 -m mugrade submit _r1VOvEAgPZvLXFJ18agr tests/hw3_submit.py -k "ndarray_cpu_ops"
# make && python3 -m pytest -v -k "reduce and cpu"
# python3 -m mugrade submit _r1VOvEAgPZvLXFJ18agr tests/hw3_submit.py -k "ndarray_cpu_reductions"
# make && python3 -m pytest -v -k "matmul and cpu"
# python3 -m mugrade submit _r1VOvEAgPZvLXFJ18agr tests/hw3_submit.py -k "ndarray_cpu_matmul"
#######
# hw2 #
#######
# https://github.com/dlsyscourse/hw2/blob/main/hw2.ipynb
# https://www.youtube.com/watch?v=uB81vGRrH0c
# python3 -m pytest tests/test_data.py
# python3 -m pytest tests/test_nn.py
# python3 -m pytest tests/test_optim.py
# python3 -m pytest tests/test_mlp_resnet.py
# python3 -m pytest tests/test_mlp_resnet.py -v -k "test_mlp_eval_epoch_1"
# python3 -m pytest tests/test_mlp_resnet.py -v -k "test_mlp_train_mnist_1"
# python3 -m mugrade submit _r1VOvEAgPZvLXFJ18agr tests/hw2_submit.py -k "mlp_resnet"
#######
# hw1 #
#######
# https://colab.research.google.com/github/dlsyscourse/hw1/blob/master/hw1.ipynb
# https://www.youtube.com/watch?v=cNADlHfHQHg
#
# python3 -m pytest
# python3 -m pytest -l -v -k "forward"
# python3 -m pytest -l -v -k "backward"
# python3 -m pytest -v -k "topo_sort"
# python3 -m pytest -v -k "compute_gradient"
# python3 -m pytest -v -k "nn_softmax_loss"
# python3 -m pytest -v -k "nn_epoch"
# python3 -m mugrade submit _r1VOvEAgPZvLXFJ18agr tests/hw1_submit.py