-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathengine_pretrain.py
96 lines (74 loc) · 3.7 KB
/
engine_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# --------------------------------------------------------
# References:
# MAE: https://github.com/facebookresearch/mae
# --------------------------------------------------------
import math
import sys
from typing import Iterable
import torch
#import wandb
import util.misc as misc
import util.lr_sched as lr_sched
def train_one_epoch(model: torch.nn.Module,
data_loader: Iterable,
optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler,
log_writer=None,
args=None):
model.train(True)
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 20
accum_iter = args.accum_iter
optimizer.zero_grad()
if log_writer is not None:
print('log_dir: {}'.format(log_writer.log_dir))
for data_iter_step, samples in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
# we use a per iteration (instead of per epoch) lr scheduler
if data_iter_step % accum_iter == 0:
lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, args)
images, images_up_2x, images_up_4x = samples['img'], samples['img_up_2x'], samples['img_up_4x']
#images, images_up_2x = samples['img'], samples['img_up_2x'] # for fmow_rgb at 2 scales
images = images.to(device, non_blocking=True)
images_up_2x = images_up_2x.to(device, non_blocking=True)
images_up_4x = images_up_4x.to(device, non_blocking=True) # comment for fmow_rgb at 2 scales
with torch.cuda.amp.autocast():
mse_loss, l1_loss, _, _ = model(images, [images_up_2x, images_up_4x], mask_ratio=args.mask_ratio)
#mse_loss, l1_loss, _, _ = model(images, images_up_2x, mask_ratio=args.mask_ratio) # for fmow_rgb at 2 scales
loss = 0.6*mse_loss + 0.4*l1_loss
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
raise ValueError(f"Loss is {loss_value}, stopping training")
# sys.exit(1)
loss = loss / accum_iter
loss_scaler(loss, optimizer, parameters=model.parameters(),
update_grad=(data_iter_step + 1) % accum_iter == 0)
if (data_iter_step + 1) % accum_iter == 0:
optimizer.zero_grad()
torch.cuda.synchronize()
metric_logger.update(loss=loss_value)
lr = optimizer.param_groups[0]["lr"]
metric_logger.update(lr=lr)
loss_value_reduce = misc.all_reduce_mean(loss_value)
if log_writer is not None and (data_iter_step + 1) % accum_iter == 0:
""" We use epoch_1000x as the x-axis in tensorboard.
This calibrates different curves when batch size changes.
"""
epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000)
log_writer.add_scalar('train_loss', loss_value_reduce, epoch_1000x)
log_writer.add_scalar('lr', lr, epoch_1000x)
'''
# Wandb logging
if args.local_rank == 0 and args.wandb is not None:
try:
wandb.log({'train_loss_step': loss_value_reduce,
'train_lr_step': lr, 'epoch_1000x': epoch_1000x})
except ValueError:
pass
'''
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}