Skip to content

Commit 9e910d9

Browse files
committed
small fix
1 parent 61d60df commit 9e910d9

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

mllib/src/main/scala/org/apache/spark/mllib/clustering/LDAOptimizer.scala

+4-4
Original file line numberDiff line numberDiff line change
@@ -145,7 +145,7 @@ class EMLDAOptimizer extends LDAOptimizer {
145145
this
146146
}
147147

148-
private[clustering] override def next(): EMLDAOptimizer = {
148+
override private[clustering] def next(): EMLDAOptimizer = {
149149
require(graph != null, "graph is null, EMLDAOptimizer not initialized.")
150150

151151
val eta = topicConcentration
@@ -202,7 +202,7 @@ class EMLDAOptimizer extends LDAOptimizer {
202202
graph.vertices.filter(isTermVertex).values.fold(BDV.zeros[Double](numTopics))(_ += _)
203203
}
204204

205-
private[clustering] override def getLDAModel(iterationTimes: Array[Double]): LDAModel = {
205+
override private[clustering] def getLDAModel(iterationTimes: Array[Double]): LDAModel = {
206206
require(graph != null, "graph is null, EMLDAOptimizer not initialized.")
207207
this.graphCheckpointer.deleteAllCheckpoints()
208208
new DistributedLDAModel(this, iterationTimes)
@@ -295,7 +295,7 @@ class OnlineLDAOptimizer extends LDAOptimizer {
295295
this
296296
}
297297

298-
private[clustering] override def initialize(docs: RDD[(Long, Vector)], lda: LDA): LDAOptimizer = {
298+
override private[clustering] def initialize(docs: RDD[(Long, Vector)], lda: LDA): LDAOptimizer = {
299299
this.k = lda.getK
300300
this.corpusSize = docs.count()
301301
this.vocabSize = docs.first()._2.size
@@ -318,7 +318,7 @@ class OnlineLDAOptimizer extends LDAOptimizer {
318318
* model, and it will update the topic distribution adaptively for the terms appearing in the
319319
* subset.
320320
*/
321-
private[clustering] override def next(): OnlineLDAOptimizer = {
321+
override private[clustering] def next(): OnlineLDAOptimizer = {
322322
iteration += 1
323323
val batch = docs.sample(withReplacement = true, miniBatchFraction, randomGenerator.nextLong())
324324
if (batch.isEmpty()) return this

0 commit comments

Comments
 (0)