|
| 1 | +/* |
| 2 | + * Licensed to the Apache Software Foundation (ASF) under one or more |
| 3 | + * contributor license agreements. See the NOTICE file distributed with |
| 4 | + * this work for additional information regarding copyright ownership. |
| 5 | + * The ASF licenses this file to You under the Apache License, Version 2.0 |
| 6 | + * (the "License"); you may not use this file except in compliance with |
| 7 | + * the License. You may obtain a copy of the License at |
| 8 | + * |
| 9 | + * http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | + * |
| 11 | + * Unless required by applicable law or agreed to in writing, software |
| 12 | + * distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | + * See the License for the specific language governing permissions and |
| 15 | + * limitations under the License. |
| 16 | + */ |
| 17 | + |
| 18 | +package org.apache.spark.ml.feature |
| 19 | + |
| 20 | +import org.apache.spark.annotation.AlphaComponent |
| 21 | +import org.apache.spark.ml.Transformer |
| 22 | +import org.apache.spark.ml.attribute.{NominalAttribute, BinaryAttribute} |
| 23 | +import org.apache.spark.ml.param._ |
| 24 | +import org.apache.spark.ml.param.shared.{HasInputCol, HasOutputCol} |
| 25 | +import org.apache.spark.ml.util.SchemaUtils |
| 26 | +import org.apache.spark.sql._ |
| 27 | +import org.apache.spark.sql.functions._ |
| 28 | +import org.apache.spark.sql.types.{DoubleType, StructType} |
| 29 | + |
| 30 | +/** |
| 31 | + * :: AlphaComponent :: |
| 32 | + * Binarize a column of continuous features given a threshold. |
| 33 | + */ |
| 34 | +@AlphaComponent |
| 35 | +final class Bucketizer extends Transformer with HasInputCol with HasOutputCol { |
| 36 | + |
| 37 | + /** |
| 38 | + * Param for threshold used to binarize continuous features. |
| 39 | + * The features greater than the threshold, will be binarized to 1.0. |
| 40 | + * The features equal to or less than the threshold, will be binarized to 0.0. |
| 41 | + * @group param |
| 42 | + */ |
| 43 | + val buckets: Param[Array[Double]] = new Param[Array[Double]](this, "buckets", "") |
| 44 | + |
| 45 | + /** @group getParam */ |
| 46 | + def getBuckets: Array[Double] = $(buckets) |
| 47 | + |
| 48 | + /** @group setParam */ |
| 49 | + def setBuckets(value: Array[Double]): this.type = set(buckets, value) |
| 50 | + |
| 51 | + /** @group setParam */ |
| 52 | + def setInputCol(value: String): this.type = set(inputCol, value) |
| 53 | + |
| 54 | + /** @group setParam */ |
| 55 | + def setOutputCol(value: String): this.type = set(outputCol, value) |
| 56 | + |
| 57 | + override def transform(dataset: DataFrame): DataFrame = { |
| 58 | + transformSchema(dataset.schema) |
| 59 | + val bucketizer = udf { feature: Double => binarySearchForBins($(buckets), feature) } |
| 60 | + val outputColName = $(outputCol) |
| 61 | + val metadata = NominalAttribute.defaultAttr |
| 62 | + .withName(outputColName).withValues($(buckets).map(_.toString)).toMetadata() |
| 63 | + dataset.select(col("*"), bucketizer(dataset($(inputCol))).as(outputColName, metadata)) |
| 64 | + } |
| 65 | + |
| 66 | + /** |
| 67 | + * Binary searching in several bins to place each data point. |
| 68 | + */ |
| 69 | + private def binarySearchForBins(splits: Array[Double], feature: Double): Double = { |
| 70 | + val wrappedSplits = Array(Double.MinValue) ++ splits ++ Array(Double.MaxValue) |
| 71 | + var left = 0 |
| 72 | + var right = wrappedSplits.length - 2 |
| 73 | + while (left <= right) { |
| 74 | + val mid = left + (right - left) / 2 |
| 75 | + val split = wrappedSplits(mid) |
| 76 | + if ((feature > split) && (feature <= wrappedSplits(mid + 1))) { |
| 77 | + return mid |
| 78 | + } else if (feature <= split) { |
| 79 | + right = mid - 1 |
| 80 | + } else { |
| 81 | + left = mid + 1 |
| 82 | + } |
| 83 | + } |
| 84 | + -1 |
| 85 | + } |
| 86 | + |
| 87 | + override def transformSchema(schema: StructType): StructType = { |
| 88 | + SchemaUtils.checkColumnType(schema, $(inputCol), DoubleType) |
| 89 | + |
| 90 | + val inputFields = schema.fields |
| 91 | + val outputColName = $(outputCol) |
| 92 | + |
| 93 | + require(inputFields.forall(_.name != outputColName), |
| 94 | + s"Output column $outputColName already exists.") |
| 95 | + |
| 96 | + val attr = NominalAttribute.defaultAttr.withName(outputColName) |
| 97 | + val outputFields = inputFields :+ attr.toStructField() |
| 98 | + StructType(outputFields) |
| 99 | + } |
| 100 | +} |
0 commit comments