-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvalidate.py
336 lines (250 loc) · 11.7 KB
/
validate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import os
import torch
import torchvision
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
import torch.optim as optim
import torchvision.transforms as standard_transforms
import numpy as np
import glob
import os
import cv2
from PIL import Image
from data_loader import Rescale
from data_loader import RescaleT
from data_loader import RandomCrop
from data_loader import ToTensor
from data_loader import ToTensorLab
from data_loader import SalObjDataset
from model import U2NET
from model import U2NETP
# ------- 1. define loss function --------
bce_loss = nn.BCELoss(reduction='mean')
def muti_bce_loss_fusion(d0, d1, d2, d3, d4, d5, d6, labels_v):
loss0 = bce_loss(d0,labels_v)
loss1 = bce_loss(d1,labels_v)
loss2 = bce_loss(d2,labels_v)
loss3 = bce_loss(d3,labels_v)
loss4 = bce_loss(d4,labels_v)
loss5 = bce_loss(d5,labels_v)
loss6 = bce_loss(d6,labels_v)
return (loss0 + loss1 + loss2 + loss3 + loss4 + loss5 + loss6), loss0
# normalize the predicted SOD probability map
def normPRED(d):
ma = torch.max(d)
mi = torch.min(d)
dn = (d-mi)/(ma-mi)
return dn
def normPRED_batch(d_batch):
for dn in range(0, d_batch.shape[0]):
d_batch[dn] = normPRED(d_batch[dn])
return d_batch
def save_blend_images(maskImg, originalImg, counter, output_dir):
for indx in range(0, originalImg.shape[0]):
oImg = originalImg[indx].transpose((1, 2, 0))
blend = oImg.copy()
mask = maskImg[indx].transpose((1,2,0))
mask = mask[:,:,0].copy()
blend[np.where(mask > 127)] = [206,55,230]
oImg = cv2.addWeighted(oImg, 0.4, blend, 0.6, 0.0)
im_pil = Image.fromarray(oImg)
im_pil.save(output_dir + str(counter) + '.jpg')
counter += 1
del oImg, blend, mask, im_pil
def validate( model, validate_salobj_dataloader, output_dir):
#switch mode to evaluate
model.eval()
if not os.path.exists(output_dir):
os.makedirs(output_dir)
running_val_loss = 0.0
d0_val_loss = 0.0
with torch.no_grad():
data_iter = iter(validate_salobj_dataloader)
next_batch = next(data_iter) # start loading the first batch
inputs, labels = next_batch['image'], next_batch['label']
inputs = inputs.type(torch.FloatTensor)
labels = labels.type(torch.FloatTensor)
next_batch_img, next_batch_lab = Variable(inputs.cuda(non_blocking = True), requires_grad=False), Variable(labels.cuda(non_blocking= True),
requires_grad=False)
iteration = 0
_batches = []
_g_precision = []
_g_recall = []
_g_f1_score = []
counter = 0
for i in range(len(validate_salobj_dataloader)):
batch_img = next_batch_img
batch_lab = next_batch_lab
if i + 2 != len(validate_salobj_dataloader):
# start copying data of next batch
next_batch = next(data_iter)
inputs, labels = next_batch['image'], next_batch['label']
inputs = inputs.type(torch.FloatTensor)
labels = labels.type(torch.FloatTensor)
next_batch_img, next_batch_lab = Variable(inputs.cuda(non_blocking = True), requires_grad=False), Variable(labels.cuda(non_blocking = True), requires_grad=False)
# forward
d0, d1, d2, d3, d4, d5, d6 = model(batch_img)
#calculate loss
val_loss, d0_loss = muti_bce_loss_fusion(d0, d1, d2, d3, d4, d5, d6, batch_lab)
# # print statistics
running_val_loss += val_loss.data.item()
d0_val_loss += d0_loss.data.item()
## measuring f1-score
res = normPRED_batch(d0) * 255
res = res.cpu().data.numpy()
res = np.array(res, dtype=np.uint8)
lab = normPRED_batch(batch_lab) * 255
lab = lab.cpu().data.numpy()
lab = np.array(lab, dtype=np.uint8)
org = normPRED_batch(batch_img) * 255
org = org.cpu().data.numpy()
org = np.array(org, dtype=np.uint8)
# save blend result
save_blend_images(res, org, counter, output_dir)
counter += res.shape[0]
_ac_tp = 0;
_ac_fn = 0;
_ac_fp = 0;
_batches.append(lab.shape[0])
for ind in range(0, lab.shape[0]):
_lab = lab[ind]
actual_positive = np.sum(_lab > 127)
_TP = np.sum(np.logical_and(_lab > 127, res[ind] > 127))
_FN = np.sum(np.logical_and(_lab > 127 , res[ind] <= 127))
_FP = np.sum(np.logical_and(_lab <= 127 , res[ind] > 127))
if(_TP / actual_positive >= 0.95):
_ac_tp += 1
elif (_FN >= _FP):
_ac_fn += 1
else:
_ac_fp += 1
if _ac_tp + _ac_fp > 0.01:
precision = _ac_tp / (_ac_tp + _ac_fp)
else:
precision = 0.0
if _ac_tp + _ac_fn > 0.01:
recall = _ac_tp / (_ac_tp + _ac_fn)
else:
recall = 0.0
_g_precision.append( precision)
_g_recall.append( recall)
if precision + recall > 0.01:
f1_score = 2.0 * ((precision * recall) / (precision + recall))
else:
f1_score = 0.0
_g_f1_score.append(f1_score)
iteration += 1
# del temporary outputs and loss
del d0, d1, d2, d3, d4, d5, d6, val_loss
_g_f1_score = np.array(_g_f1_score)
_g_precision = np.array(_g_precision)
_g_recall = np.array(_g_recall)
total_sample = np.sum(_batches)
f1_weighted_avg = np.sum(_g_f1_score * _batches) / total_sample
precision_weighted_avg = np.sum(_g_precision * _batches) / total_sample
recall_weighted_avg = np.sum(_g_recall * _batches) / total_sample
print("Validation batch %3f , running loss %3f \n" % ( running_val_loss / iteration, d0_val_loss / iteration))
return running_val_loss / iteration , d0_val_loss / iteration , f1_weighted_avg, precision_weighted_avg, recall_weighted_avg
def load_ckp(checkpoint_fpath, model, optimizer):
"""
checkpoint_path: path to save checkpoint
model: model that we want to load checkpoint parameters into
optimizer: optimizer we defined in previous training
"""
# load check point
checkpoint = torch.load(checkpoint_fpath)
# initialize state_dict from checkpoint to model
model.load_state_dict(checkpoint['state_dict'])
if(torch.cuda.is_available()):
model.cuda()
# initialize optimizer from checkpoint to optimizer
optimizer.load_state_dict(checkpoint['optimizer'])
# return model, optimizer, epoch value
return model, optimizer, checkpoint['epoch']
def save_model(epoch, model, optimizer, running_train_loss, tr_loss, run_val_loss, val_loss, precision=0.0, recall=0.0, f1_score=0.0):
file1 = open(log_writter, "a+") # append mode
file1.write("%3f , %3f , %3f, %3f \n" %(running_train_loss, tr_loss, run_val_loss, val_loss))
file1.close()
checkpoint = {
'epoch': epoch + 1,
'tr_loss_G': running_train_loss,
'tr_loss_D': tr_loss,
'val_loss_G': run_val_loss,
'val_loss_D': val_loss,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'f1-score' : f1_score,
'precision': precision,
'recall': recall
}
torch.save(checkpoint, model_dir + model_name+"_ckp_ep_%d_tr_loss_%3f_td0_loss_%3f_va_loss_%3f_td0_loss_%3f_f1_%3f.ckpt" % (epoch + 1, running_train_loss, tr_loss, run_val_loss, val_loss, f1_score))
def find_image_path(src_dir, file_name) -> str:
f_name = os.path.splitext(file_name)
ext = f_name[-1]
f_name = f_name[0]
full_path = os.path.join(src_dir, f_name + ext)
if os.path.exists(full_path):
return full_path
else:
return os.path.join(src_dir, f_name + '.png')
if __name__ == '__main__':
# ------- 2. set the directory of training dataset --------
model_name = 'u2netp'
log_writter = os.path.join ("./", 'log' + os.sep)
log_writter = os.path.join (log_writter , 'val_log.txt')
val_data_dir = os.path.join ('./', 'val_data' + os.sep)
val_image_dir = os.path.join('imgs' + os.sep)
val_label_dir = os.path.join('masks' + os.sep)
model_dir = './selected_models/'
if not os.path.exists(model_dir):
os.mkdir(model_dir)
# model_dir = os.path.join(model_dir, 'u2netp_bce_itr_6000_train_0.210024_tar_0.210024' + '.pth')
#saved_check_point = os.path.join(model_dir, 'u2net_ckp_ep_86_tr_loss_0.137484_td0_loss_0.013057_va_loss_0.000000_td0_loss_0.000000_f1_0.000000' + '.ckpt')
batch_size_val = 20
val_num = 0
val_img_name_list = glob.glob(val_data_dir + val_image_dir + '*')
val_lbl_name_list = []
for img_path in val_img_name_list:
img_name = img_path.split(os.sep)[-1]
val_lbl_name_list.append(find_image_path(val_data_dir + val_label_dir, img_name))
print("---")
print("test images: ", len(val_img_name_list))
print("test labels: ", len(val_lbl_name_list))
print("---")
val_salobj_dataset = SalObjDataset(img_name_list = val_img_name_list,
lbl_name_list = val_lbl_name_list,
transform=transforms.Compose([RescaleT(320),
ToTensorLab(flag=0)])
)
val_salobj_dataloader = DataLoader(val_salobj_dataset,
batch_size=batch_size_val,
shuffle=False,
num_workers=1,
pin_memory=True)
# ------- 3. define model --------
# define the net
if(model_name=='u2netp'):
net = U2NETP(3,1)
else:
net = U2NET(3,1)
# ------- 4. define optimizer --------
print("---define optimizer...")
optimizer = optim.Adam(net.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0.0)
print("---start validation...")
for (root,dir,files) in os.walk(model_dir, topdown=False):
for ckpt in files:
if(model_name=='u2netp'):
net = U2NETP(3,1)
else:
net = U2NET(3,1)
ckpt_path = os.path.join(model_dir + ckpt)
_, _, epoch = load_ckp(ckpt_path, net, optimizer)
out_dir = os.path.join(val_data_dir + os.sep, ckpt.split('.')[0] + os.sep)
val_loss, d0_val_loss, f1_score, precision, recall = validate(net, validate_salobj_dataloader=val_salobj_dataloader, output_dir=out_dir)
file = open(log_writter, "a+") # append mode
file.write(f'{val_loss} , {d0_val_loss} , {f1_score} , {precision} , {recall}, {ckpt}\n')
file.close()
del net, file