-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
270 lines (214 loc) · 9.88 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import sys
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
#import seaborn as sns
from sklearn import linear_model
from sklearn.preprocessing import StandardScaler, RobustScaler
from sklearn.neighbors import DistanceMetric
from sklearn.ensemble import IsolationForest, VotingRegressor, AdaBoostRegressor
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.neighbors import NearestNeighbors
from sklearn.linear_model import Lasso, Ridge, ElasticNet
from sklearn.feature_selection import f_regression, chi2
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from sklearn.metrics import r2_score
from sklearn.neural_network import MLPRegressor
from sklearn.svm import SVR
from catboost import CatBoostRegressor
from sklearn.linear_model import SGDRegressor
from sklearn.kernel_ridge import KernelRidge
from sklearn.linear_model import ElasticNet
from sklearn.linear_model import BayesianRidge
from impyute.imputation.cs import mice, fast_knn
from sklearn.impute import KNNImputer
from sklearn.experimental import enable_iterative_imputer # noqa
from sklearn.impute import IterativeImputer
from fancyimpute import KNN, NuclearNormMinimization, SoftImpute, BiScaler, IterativeImputer
from sklearn.model_selection import GridSearchCV
import feature_selection as s
SEED = 13
#Filling missing values
def miss_val(x_train, x_test):
#Fill-in nan values with median of the feature
x_train = x_train.fillna(x_train.median())
x_test = x_test.fillna(x_test.median())
return x_train, x_test
def miss_val_with_iterative(x_train,x_test):
impute_it = IterativeImputer(estimator = GradientBoostingRegressor())
x_train = pd.DataFrame(impute_it.fit_transform(x_train),columns = x_train.columns)
impute_it_test = IterativeImputer(estimator = GradientBoostingRegressor())
x_test = pd.DataFrame(impute_it_test.fit_transform(x_test),columns = x_test.columns)
return x_train,x_test
def miss_val_with_knn(x_train,x_test):
impute_knn = KNNImputer(n_neighbors = 5)
x_train = pd.DataFrame(impute_knn.fit_transform(x_train),columns = x_train.columns)
impute_knn_test = KNNImputer(n_neighbors = 5)
x_test = pd.DataFrame(impute_knn_test.fit_transform(x_test),columns = x_test.columns)
return x_train,x_test
def miss_val_with_fastknn(x_train,x_test):
x_train = pd.DataFrame(fast_knn(x_train.values, k=5))
x_test = pd.DataFrame(fast_knn(x_test.values, k=5))
return x_train,x_test
def miss_val_with_mice(x_train,x_test):
x_train = pd.DataFrame(mice(x_train.values))
x_test = pd.DataFrame(mice(x_test.values))
return x_train,x_test
'''
def miss_val_with_missForest(x_train,x_test):
impute_MF = MissForest(max_iter=1, n_estimators=50)
x_train = pd.DataFrame(impute_MF.fit_transform(x_train),columns = x_train.columns)
impute_MF = MissForest()
x_test = pd.DataFrame(impute_MF.fit_transform(x_test),columns = x_train.columns)
return x_train,x_test
'''
def miss_val_with_fancyinput(x_train,x_test):
print(x_train)
X_train_incomplete_normalized = x_train
impute_fancy = IterativeImputer()
x_train = pd.DataFrame(impute_fancy.fit_transform(X_train_incomplete_normalized.values),columns = x_train.columns)
X_test_incomplete_normalized = x_test
impute_fancy_test = IterativeImputer()
x_test = pd.DataFrame(impute_fancy_test.fit_transform(X_test_incomplete_normalized.values),columns = x_test.columns)
return x_train,x_test
#Remove outliers
def outliers_IF(x_train,y):
clf = IsolationForest(max_samples=0.99, random_state = SEED, contamination= 0.02)
outliers = clf.fit_predict(x_train)
print("Num lines before drop : ", x_train.shape)
print("Num lines before drop : ", y.shape)
remove = np.argwhere(outliers == -1)
for num,line in enumerate(remove):
if not line == 1:
x_train = x_train.drop([num])
y = y.drop([num])
print("Num lines after drop : ", x_train.shape)
print("Num lines after drop : ", y.shape)
return x_train, y
def outliers_KNN(data, ydata):
neigh = NearestNeighbors(n_neighbors=3)
neigh.fit(data)
distancesToNN, indices = neigh.kneighbors(data, return_distance=True)
meanDistanceOfNN = np.mean(distancesToNN, axis = 1)
factor = 1.05
mean_dist_tot = np.mean(meanDistanceOfNN)
threshold = factor * mean_dist_tot
index_to_be_removed = meanDistanceOfNN > threshold
print(index_to_be_removed)
i=0
for num in range(data.shape[0]):
if index_to_be_removed[i] :
data = data.drop([num])
ydata = ydata.drop([num])
i +=1
print("Num lines after drop : ", data.shape)
print("Num lines after drop : ", ydata.shape)
return data, ydata
def scale(x_train,x_test):
scaler = StandardScaler()
X_train = scaler.fit_transform(x_train)
X_test = scaler.fit_transform(x_test)
return pd.DataFrame(X_train, columns=x_train.columns), pd.DataFrame(X_test, columns = x_test.columns)
def run_model_iter(x_train_start, y_start, x_Test_start, seed_start, seed_stop):
score = 0
best_catboost = None
best_rounded = None
best_seed = 0
for i in range(seed_start, seed_stop):
SEED = i
#Remove outliers : Isolation Forest
x_train, y = outliers_IF(x_train_start, y_start)
#Feature Selection :
x_train, x_Test = s.RFE_selector(x_train, x_Test_start, y, 50)
#Split the dataset
x_train, x_test, y_train, y_test = train_test_split(x_train, y, test_size=0.20, random_state=SEED)
catboost = CatBoostRegressor(random_seed=SEED)
catboost.fit(x_train.values, y_train.values)
y_catboost_test = catboost.predict(x_test.values)
if r2_score(y_test, y_catboost_test) > score:
best_seed = i
best_catboost = y_catboost_test
best_rounded = np.floor(y_catboost_test) + np.full(np.shape(y_catboost_test), 0.5)
SEED = best_seed
y_predictions = catboost.predict(x_Test.values) #for output
#y_predictions = np.floor(y_predictions) + np.full(np.shape(y_predictions), 0.5)
y_predictions = np.reshape(y_predictions, y_predictions.shape[0]) #for output
return best_catboost, best_rounded, best_seed, y_predictions, y_test, x_Test
def run_model(x_train, y, x_Test, seed):
SEED = seed
#Remove outliers : Isolation Forest
x_train, y = outliers_IF(x_train, y)
#x_train, y = outliers_IF(x_train, y)
#Feature Selection :
x_train, x_Test = s.RFE_selector(x_train, x_Test, y, 50)
#Split the dataset
x_train, x_test, y_train, y_test = train_test_split(x_train, y, test_size=0.20, random_state=SEED)
catboost = CatBoostRegressor(random_seed=200, depth=6, learning_rate=0.05, iterations=1100)
'''
parameters = {'depth' : [6],
'learning_rate' : [0.045,0.05],
'iterations':[1000]
}
grid = GridSearchCV(estimator=catboost, param_grid = parameters, cv = 2, n_jobs=-1)
result = grid.fit(x_train.values, y_train.values)
# summarize result
print('Best Score: %s' % result.best_score_)
print('Best Hyperparameters: %s' % result.best_params_)
y_catboost_test = grid.predict(x_test.values)
y_predictions = grid.predict(x_Test.values) #for output
'''
catboost.fit(x_train.values, y_train.values)
y_catboost_test = catboost.predict(x_test.values)
rounded = np.floor(y_catboost_test) + np.full(np.shape(y_catboost_test), 0.5)
y_predictions = catboost.predict(x_Test.values) #for output
#y_predictions = np.floor(y_predictions) + np.full(np.shape(y_predictions), 0.5)
y_predictions = np.reshape(y_predictions, y_predictions.shape[0]) #for output
return y_catboost_test, rounded, y_predictions, y_test, x_Test
def run_model_submit(x_train, y, x_Test):
#Remove outliers : Isolation Forest
x_train, y = outliers_IF(x_train, y)
#x_train, y = outliers_IF(x_train, y)
#Feature Selection :
x_train, x_Test = s.RFE_selector(x_train, x_Test, y, 100)
#Split the dataset
#x_train, x_test, y_train, y_test = train_test_split(x_train, y, test_size=0.20, random_state=SEED)
catboost = CatBoostRegressor(random_seed=200, depth=6, learning_rate=0.005, iterations=20000)
catboost.fit(x_train.values, y.values)
#y_catboost_test = catboost.predict(x_test.values)
#rounded = np.floor(y_catboost_test) + np.full(np.shape(y_catboost_test), 0.5)
y_predictions = catboost.predict(x_Test.values) #for output
#y_predictions = np.floor(y_predictions) + np.full(np.shape(y_predictions), 0.5)
y_predictions = np.reshape(y_predictions, y_predictions.shape[0]) #for output
return y_predictions
if __name__ == '__main__':
x_train_origin = pd.read_csv("x_train.csv")
y_train_origin = pd.read_csv("y_train.csv")
x_Test = pd.read_csv("x_test.csv", delimiter=",", index_col='id')
#formatting
train_data = pd.merge(left=x_train_origin, right=y_train_origin, how='inner').drop(columns=['id'])
x_train = x_train_origin.drop(columns=['id'])
y = y_train_origin['y']
#Imputation missing values
print("Imputation missing values")
x_train, x_Test = miss_val_with_knn(x_train, x_Test)
#scale
print("scale")
x_train, x_Test = scale(x_train, x_Test)
# Set true if you want to test some seeds
iter = False
if iter:
# Seeds that have been tested : 0 -> 10
catboost, rounded, best_seed, y_predictions, y_test, x_Test = run_model_iter(
x_train, y, x_Test, 0, 11)
print("best seed = ", best_seed)
else:
#catboost, rounded, y_predictions, y_test, x_Test = run_model(x_train, y, x_Test, SEED)
y_predictions = run_model_submit(x_train, y, x_Test)
#print("Cat Boost",r2_score(y_test, catboost))
#print("with int values", r2_score(y_test, rounded))
#Create submission file
output = pd.DataFrame()
output.insert(0, 'y', y_predictions)
output.index = x_Test.index
output.index.names = ['id']
output.to_csv("output")