@@ -223,7 +223,7 @@ def fit(self, sentences, cc_matrix=None, learning_rate=1e-4, reg=0.1, xmax=100,
223
223
for i in xrange (V ):
224
224
# matrix = reg*np.eye(D) + np.sum((fX[i,j]*np.outer(U[j], U[j]) for j in xrange(V)), axis=0)
225
225
matrix = reg * np .eye (D ) + (fX [i ,:]* U .T ).dot (U )
226
- # assert(np.abs(matrix - matrix2).sum() < 10e -5)
226
+ # assert(np.abs(matrix - matrix2).sum() < 1e -5)
227
227
vector = (fX [i ,:]* (logX [i ,:] - b [i ] - c - mu )).dot (U )
228
228
W [i ] = np .linalg .solve (matrix , vector )
229
229
# print "fast way took:", (datetime.now() - t0)
@@ -238,8 +238,8 @@ def fit(self, sentences, cc_matrix=None, learning_rate=1e-4, reg=0.1, xmax=100,
238
238
# vector2 += fX[i,j]*(logX[i,j] - b[i] - c[j])*U[j]
239
239
# print "slow way took:", (datetime.now() - t0)
240
240
241
- # assert(np.abs(matrix - matrix2).sum() < 10e -5)
242
- # assert(np.abs(vector - vector2).sum() < 10e -5)
241
+ # assert(np.abs(matrix - matrix2).sum() < 1e -5)
242
+ # assert(np.abs(vector - vector2).sum() < 1e -5)
243
243
# W[i] = np.linalg.solve(matrix, vector)
244
244
# print "updated W"
245
245
@@ -257,7 +257,7 @@ def fit(self, sentences, cc_matrix=None, learning_rate=1e-4, reg=0.1, xmax=100,
257
257
for j in xrange (V ):
258
258
# matrix = reg*np.eye(D) + np.sum((fX[i,j]*np.outer(W[i], W[i]) for i in xrange(V)), axis=0)
259
259
matrix = reg * np .eye (D ) + (fX [:,j ]* W .T ).dot (W )
260
- # assert(np.abs(matrix - matrix2).sum() < 10e -8)
260
+ # assert(np.abs(matrix - matrix2).sum() < 1e -8)
261
261
vector = (fX [:,j ]* (logX [:,j ] - b - c [j ] - mu )).dot (W )
262
262
# matrix = reg*np.eye(D)
263
263
# vector = 0
@@ -323,7 +323,7 @@ def main(we_file, w2i_file, use_brown=True, n_files=50):
323
323
model .fit (
324
324
sentences ,
325
325
cc_matrix = cc_matrix ,
326
- learning_rate = 3 * 10e-5 ,
326
+ learning_rate = 3e-4 ,
327
327
reg = 0.1 ,
328
328
epochs = 10 ,
329
329
gd = True ,
0 commit comments