This is a student project about predicting the chance of admission. For this project we are using Graduate Admission Dataset from Kaggle. We will use machine learning to analyze the data, find a model to predict the University Ranking and then visualize the result.
-
Required Libraries
-
Start Server
- Create a virtual environment for the project: python -m venv venv
- Activate the virtual environment for windows: venv\Scripts\activate
- Activate the virtual environment for Linux/macOS: source venv/bin/activate
- Install required libraries in the project: pip install dash pandas numpy joblib
- Start server: python app.py
https://www.kaggle.com/mohansacharya/graduate-admissions?select=Admission_Predict_Ver1.1.csv
- Regression
- DecisionTree
- Linear Regression
- RandomForest
- KNeighbours
- SVM
- AdaBoostClassifier
- GradientBoostingClassifier
- Ridge
- BayesianRidge
- ElasticNet
- HuberRegressor
- DASH/Plotly
- Machine learning model: regression with RandonForestRegressor
- Backend: Flask which is embedded in Dash
- Frontend: Dash/Plotly
https://github.com/LameesKadhim/SAP-project
https://predict-student-admission.herokuapp.com/
-
Step 1. Create a new folder for your project:
$ mkdir sap-project
$ cd sap-project
-
Step 2. Initialize the folder with git and a virtualenv
$ git init // initializes an empty git repo
$ virtualenv venv // creates a virtualenv called "venv"
$ venv\Scripts\activate // Activate the virtual environment for windows
-uses the virtualenv for linux and Macos: $ source venv/bin/activate
You will need to reinstall your app's dependencies with this virtualenv:
$ pip install dash
$ pip install plotly
You will also need a new dependency, gunicorn, for deploying the app:
$ pip install gunicorn
-
Step 3. Initialize the folder with the (app.py), requirements.txt, and a Procfile for deployment
content of Procfile is --> web: gunicorn app:server
creation of requirements.txt file:
requirements.txt describes your Python dependencies. You can fill this file in automatically with:
$ pip freeze > requirements.txt
-
Step 4 Initialize Heroku, add files to Git, and deploy
$ heroku create my-dash-app # change my-dash-app to a unique name
$ git add . # add all files to git
$ git commit -m 'Initial app boilerplate'
$ git push heroku master # deploy code to heroku