-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathops.py
54 lines (42 loc) · 2.1 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import tensorflow as tf
from tensorflow.contrib.layers import variance_scaling_initializer as he_init
from tensorflow.contrib.layers import l2_regularizer
def conv_layer(x, channels, kernel=3, stride=1, activation='relu', padding='VALID', layer_name='_conv3d') :
with tf.name_scope(layer_name) :
if activation == None :
return tf.layers.conv3d(inputs=x, filters=channels, kernel_size=kernel, kernel_initializer=he_init(),
strides=stride, padding=padding)
else :
return tf.layers.conv3d(inputs=x, filters=channels, kernel_size=kernel, kernel_initializer=he_init(),
strides=stride, padding=padding, activation=relu)
def deconv_layer(x, channels, kernel=4, stride=2, padding='SAME', layer_name='_deconv3d') :
with tf.name_scope(layer_name) :
x = tf.layers.conv3d_transpose(inputs=x, filters=channels, kernel_size=kernel, kernel_initializer=he_init(),
strides=stride, padding=padding, use_bias=False)
return x
def flatten(x) :
return tf.layers.flatten(x)
def fully_connected(x, unit=2, layer_name='fully') :
with tf.name_scope(layer_name) :
return tf.layers.dense(x, units=unit)
def max_pooling(x, kernel=2, stride=2, padding='VALID') :
x = tf.layers.max_pooling3d(inputs=x, pool_size=kernel, strides=stride, padding=padding)
x = tf.concat([x, x], axis=-1)
return x
def copy_crop(crop_layer, in_layer):
crop = []
for i in range(1, 4):
crop_left = (tf.shape(crop_layer)[i] - tf.shape(in_layer)[i]) // 2
crop.append(crop_left)
crop_right = tf.cond(tf.equal(tf.shape(crop_layer)[i] - crop_left*2, tf.shape(in_layer)[i]) ,
lambda : crop_left,
lambda : crop_left + 1)
crop.append(crop_right)
crop_layer = crop_layer[:, crop[0]: -crop[1], crop[2]: -crop[3], crop[4]: -crop[5], :]
return tf.concat([crop_layer, in_layer], axis=-1)
def relu(x) :
return tf.nn.relu(x)
def sigmoid(x) :
return tf.sigmoid(x)
def softmax(x) :
return tf.nn.softmax(x)