-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathner_main.py
191 lines (157 loc) · 6.74 KB
/
ner_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import os
import json
import torch
import numpy as np
from config import NerConfig
from model import BertNer
from data_loader import NerDataset
from tqdm import tqdm
from seqeval.metrics import classification_report
from torch.utils.data import DataLoader
from transformers import AdamW, get_linear_schedule_with_warmup, BertTokenizer
class Trainer:
def __init__(self,
output_dir=None,
model=None,
train_loader=None,
dev_loader=None,
test_loader=None,
optimizer=None,
schedule=None,
epochs=1,
device="cpu",
id2label=None,
save_step=None):
self.output_dir = output_dir
self.model = model
self.train_loader = train_loader
self.dev_loader = dev_loader
self.test_loader = test_loader
self.epochs = epochs
self.device = device
self.optimizer = optimizer
self.schedule = schedule
self.id2label = id2label
self.total_step = len(self.train_loader) * self.epochs
self.save_step = save_step
def train(self):
global_step = 1
for epoch in range(1, self.epochs + 1):
for step, batch_data in enumerate(self.train_loader):
self.model.train()
for key, value in batch_data.items():
batch_data[key] = value.to(self.device)
input_ids = batch_data["input_ids"]
attention_mask = batch_data["attention_mask"]
labels = batch_data["labels"]
output = self.model(input_ids, attention_mask, labels)
loss = output.loss
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
self.schedule.step()
print(f"【train】{epoch}/{self.epochs} {global_step}/{self.total_step} loss:{loss.item()}")
global_step += 1
if global_step % self.save_step == 0:
torch.save(self.model.state_dict(), os.path.join(self.output_dir, "pytorch_model_ner.bin"))
torch.save(self.model.state_dict(), os.path.join(self.output_dir, "pytorch_model_ner.bin"))
def test(self):
self.model.load_state_dict(torch.load(os.path.join(self.output_dir, "pytorch_model_ner.bin")))
self.model.eval()
preds = []
trues = []
for step, batch_data in enumerate(tqdm(self.test_loader)):
for key, value in batch_data.items():
batch_data[key] = value.to(self.device)
input_ids = batch_data["input_ids"]
attention_mask = batch_data["attention_mask"]
labels = batch_data["labels"]
output = self.model(input_ids, attention_mask, labels)
logits = output.logits
attention_mask = attention_mask.detach().cpu().numpy()
labels = labels.detach().cpu().numpy()
batch_size = input_ids.size(0)
for i in range(batch_size):
length = sum(attention_mask[i])
logit = logits[i][1:length]
logit = [self.id2label[i] for i in logit]
label = labels[i][1:length]
label = [self.id2label[i] for i in label]
preds.append(logit)
trues.append(label)
report = classification_report(trues, preds)
return report
def build_optimizer_and_scheduler(args, model, t_total):
module = (
model.module if hasattr(model, "module") else model
)
# 差分学习率
no_decay = ["bias", "LayerNorm.weight"]
model_param = list(module.named_parameters())
bert_param_optimizer = []
other_param_optimizer = []
for name, para in model_param:
space = name.split('.')
# print(name)
if space[0] == 'bert_module' or space[0] == "bert":
bert_param_optimizer.append((name, para))
else:
other_param_optimizer.append((name, para))
optimizer_grouped_parameters = [
# bert other module
{"params": [p for n, p in bert_param_optimizer if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay, 'lr': args.bert_learning_rate},
{"params": [p for n, p in bert_param_optimizer if any(nd in n for nd in no_decay)],
"weight_decay": 0.0, 'lr': args.bert_learning_rate},
# 其他模块,差分学习率
{"params": [p for n, p in other_param_optimizer if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay, 'lr': args.crf_learning_rate},
{"params": [p for n, p in other_param_optimizer if any(nd in n for nd in no_decay)],
"weight_decay": 0.0, 'lr': args.crf_learning_rate},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.bert_learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=int(args.warmup_proportion * t_total), num_training_steps=t_total
)
return optimizer, scheduler
def main(data_name):
args = NerConfig(data_name)
with open(os.path.join(args.output_dir, "ner_args.json"), "w") as fp:
json.dump(vars(args), fp, ensure_ascii=False, indent=2)
tokenizer = BertTokenizer.from_pretrained(args.bert_dir)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
with open(os.path.join(args.data_path, "train.txt"), "r") as fp:
train_data = fp.read().split("\n")
train_data = [json.loads(d) for d in train_data]
with open(os.path.join(args.data_path, "dev.txt"), "r") as fp:
dev_data = fp.read().split("\n")
dev_data = [json.loads(d) for d in dev_data]
train_dataset = NerDataset(train_data, args, tokenizer)
dev_dataset = NerDataset(dev_data, args, tokenizer)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=args.train_batch_size, num_workers=2)
dev_loader = DataLoader(dev_dataset, shuffle=False, batch_size=args.dev_batch_size, num_workers=2)
model = BertNer(args)
# for name,_ in model.named_parameters():
# print(name)
model.to(device)
t_toal = len(train_loader) * args.epochs
optimizer, schedule = build_optimizer_and_scheduler(args, model, t_toal)
train = Trainer(
output_dir=args.output_dir,
model=model,
train_loader=train_loader,
dev_loader=dev_loader,
test_loader=dev_loader,
optimizer=optimizer,
schedule=schedule,
epochs=args.epochs,
device=device,
id2label=args.id2label,
save_step=args.save_step,
)
train.train()
report = train.test()
print(report)
if __name__ == "__main__":
data_name = "duee"
main(data_name)