|
| 1 | +from datetime import datetime |
| 2 | + |
1 | 3 | import pandas as pd
|
2 | 4 | import pytest
|
3 | 5 |
|
4 |
| -from problems.pandas import problem_176 |
| 6 | +from problems.pandas import problem_176, problem_1321 |
5 | 7 |
|
6 | 8 |
|
7 | 9 | @pytest.mark.parametrize(
|
@@ -33,3 +35,110 @@ def test_problem_176(input_data, expected_data):
|
33 | 35 | expected_table = pd.DataFrame(expected_data)
|
34 | 36 | result = problem_176(table)
|
35 | 37 | assert result.equals(expected_table)
|
| 38 | + |
| 39 | + |
| 40 | +@pytest.mark.parametrize( |
| 41 | + "input_data, expected_data", |
| 42 | + [ |
| 43 | + pytest.param( |
| 44 | + { |
| 45 | + "customer_id": [1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 3], |
| 46 | + "name": [ |
| 47 | + "Jhon", |
| 48 | + "Daniel", |
| 49 | + "Jade", |
| 50 | + "Khaled", |
| 51 | + "Winston", |
| 52 | + "Elvis", |
| 53 | + "Anna", |
| 54 | + "Maria", |
| 55 | + "Jaze", |
| 56 | + "Jhon", |
| 57 | + "Jade", |
| 58 | + ], |
| 59 | + "visited_on": [ |
| 60 | + datetime(2019, 1, 1), |
| 61 | + datetime(2019, 1, 2), |
| 62 | + datetime(2019, 1, 3), |
| 63 | + datetime(2019, 1, 4), |
| 64 | + datetime(2019, 1, 5), |
| 65 | + datetime(2019, 1, 6), |
| 66 | + datetime(2019, 1, 7), |
| 67 | + datetime(2019, 1, 8), |
| 68 | + datetime(2019, 1, 9), |
| 69 | + datetime(2019, 1, 10), |
| 70 | + datetime(2019, 1, 10), |
| 71 | + ], |
| 72 | + "amount": [100, 110, 120, 130, 110, 140, 150, 80, 110, 130, 150], |
| 73 | + }, |
| 74 | + { |
| 75 | + "visited_on": [ |
| 76 | + datetime(2019, 1, 7), |
| 77 | + datetime(2019, 1, 8), |
| 78 | + datetime(2019, 1, 9), |
| 79 | + datetime(2019, 1, 10), |
| 80 | + ], |
| 81 | + "amount": [860, 840, 840, 1000], |
| 82 | + "average_amount": [122.86, 120, 120, 142.86], |
| 83 | + }, |
| 84 | + id="happy_path", |
| 85 | + ), |
| 86 | + pytest.param( |
| 87 | + { |
| 88 | + "customer_id": [1, 2, 3, 1, 4, 5, 6, 1, 7, 8, 9], |
| 89 | + "name": [ |
| 90 | + "Jhon", |
| 91 | + "Daniel", |
| 92 | + "Jade", |
| 93 | + "Jhon", |
| 94 | + "Khaled", |
| 95 | + "Winston", |
| 96 | + "Elvis", |
| 97 | + "Jhon", |
| 98 | + "Anna", |
| 99 | + "Maria", |
| 100 | + "Jaze", |
| 101 | + ], |
| 102 | + "visited_on": [ |
| 103 | + datetime(2019, 1, 1), |
| 104 | + datetime(2019, 1, 2), |
| 105 | + datetime(2019, 1, 3), |
| 106 | + datetime(2019, 1, 1), |
| 107 | + datetime(2019, 1, 4), |
| 108 | + datetime(2019, 1, 5), |
| 109 | + datetime(2019, 1, 6), |
| 110 | + datetime(2019, 1, 1), |
| 111 | + datetime(2019, 1, 7), |
| 112 | + datetime(2019, 1, 8), |
| 113 | + datetime(2019, 1, 9), |
| 114 | + ], |
| 115 | + "amount": [100, 110, 120, 50, 130, 110, 140, 40, 150, 80, 110], |
| 116 | + }, |
| 117 | + { |
| 118 | + "visited_on": [ |
| 119 | + datetime(2019, 1, 7), |
| 120 | + datetime(2019, 1, 8), |
| 121 | + datetime(2019, 1, 9), |
| 122 | + ], |
| 123 | + "amount": [950, 840, 840], |
| 124 | + "average_amount": [135.71, 120, 120], |
| 125 | + }, |
| 126 | + id="duplicated_days", |
| 127 | + ), |
| 128 | + ], |
| 129 | +) |
| 130 | +def test_problem_1321(input_data, expected_data): |
| 131 | + table = pd.DataFrame(input_data) |
| 132 | + expected_table = pd.DataFrame(expected_data).reset_index(drop=True) |
| 133 | + result = ( |
| 134 | + problem_1321(table) |
| 135 | + .reset_index(drop=True) |
| 136 | + .astype(expected_table.dtypes.to_dict()) |
| 137 | + ) |
| 138 | + assert list(result.index) == list( |
| 139 | + expected_table.index |
| 140 | + ), f"Index mismatch: {result.index} vs {expected_table.index}" |
| 141 | + for col in expected_table.columns: |
| 142 | + assert result[col].equals(expected_table[col]), f"Mismatch in column '{col}'" |
| 143 | + |
| 144 | + assert result.equals(expected_table) |
0 commit comments