forked from mlcommons/GaNDLF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gandlf_preprocess
79 lines (73 loc) · 2.2 KB
/
gandlf_preprocess
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#!usr/bin/env python
# -*- coding: utf-8 -*-
import argparse
from GANDLF.cli import preprocess_and_save, copyrightMessage
# main function
if __name__ == "__main__":
parser = argparse.ArgumentParser(
prog="GANDLF_Preprocess",
formatter_class=argparse.RawTextHelpFormatter,
description="Generate training/inference data which are preprocessed to reduce resource footprint during computation.\n\n"
+ copyrightMessage,
)
parser.add_argument(
"-c",
"--config",
metavar="",
type=str,
help="The configuration file (contains all the information related to the training/inference session), this is read from 'output' during inference",
required=True,
)
parser.add_argument(
"-i",
"--inputdata",
metavar="",
type=str,
help="Data csv file that is used for training/inference",
required=True,
)
parser.add_argument(
"-o",
"--output",
metavar="",
type=str,
help="Output directory to save intermediate files and model weights",
required=True,
)
parser.add_argument(
"-l",
"--labelPad",
metavar="",
type=str,
default="constant",
help="This specifies the padding strategy for the label when 'patch_sampler' is 'label'. Defaults to 'constant' [full list: https://numpy.org/doc/stable/reference/generated/numpy.pad.html]",
required=False,
)
parser.add_argument(
"-a",
"--applyaugs",
metavar="",
type=bool,
default=False,
help="This specifies the whether to apply data augmentation during output creation. Defaults to False",
required=False,
)
parser.add_argument(
"-a",
"--cropzero",
metavar="",
type=bool,
default=False,
help="This specifies the whether to apply zero cropping during output creation. Defaults to False",
required=False,
)
args = parser.parse_args()
preprocess_and_save(
args.inputdata,
args.config,
args.output,
args.labelPad,
args.applyaugs,
args.cropzero,
)
print("Finished.")