forked from apache/superset
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsqla_models_tests.py
308 lines (275 loc) · 11.8 KB
/
sqla_models_tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# isort:skip_file
import re
from typing import Any, Dict, NamedTuple, List, Pattern, Tuple, Union
from unittest.mock import patch
import pytest
import tests.test_app
from superset import db
from superset.connectors.sqla.models import SqlaTable, TableColumn
from superset.db_engine_specs.druid import DruidEngineSpec
from superset.exceptions import QueryObjectValidationError
from superset.models.core import Database
from superset.utils.core import DbColumnType, get_example_database, FilterOperator
from .base_tests import SupersetTestCase
VIRTUAL_TABLE_INT_TYPES: Dict[str, Pattern[str]] = {
"hive": re.compile(r"^INT_TYPE$"),
"mysql": re.compile("^LONGLONG$"),
"postgresql": re.compile(r"^INT$"),
"presto": re.compile(r"^INTEGER$"),
"sqlite": re.compile(r"^INT$"),
}
VIRTUAL_TABLE_STRING_TYPES: Dict[str, Pattern[str]] = {
"hive": re.compile(r"^STRING_TYPE$"),
"mysql": re.compile(r"^VAR_STRING$"),
"postgresql": re.compile(r"^STRING$"),
"presto": re.compile(r"^VARCHAR*"),
"sqlite": re.compile(r"^STRING$"),
}
class TestDatabaseModel(SupersetTestCase):
def test_is_time_druid_time_col(self):
"""Druid has a special __time column"""
database = Database(database_name="druid_db", sqlalchemy_uri="druid://db")
tbl = SqlaTable(table_name="druid_tbl", database=database)
col = TableColumn(column_name="__time", type="INTEGER", table=tbl)
self.assertEqual(col.is_dttm, None)
DruidEngineSpec.alter_new_orm_column(col)
self.assertEqual(col.is_dttm, True)
col = TableColumn(column_name="__not_time", type="INTEGER", table=tbl)
self.assertEqual(col.is_temporal, False)
def test_temporal_varchar(self):
"""Ensure a column with is_dttm set to true evaluates to is_temporal == True"""
database = get_example_database()
tbl = SqlaTable(table_name="test_tbl", database=database)
col = TableColumn(column_name="ds", type="VARCHAR", table=tbl)
# by default, VARCHAR should not be assumed to be temporal
assert col.is_temporal is False
# changing to `is_dttm = True`, calling `is_temporal` should return True
col.is_dttm = True
assert col.is_temporal is True
def test_db_column_types(self):
test_cases: Dict[str, DbColumnType] = {
# string
"CHAR": DbColumnType.STRING,
"VARCHAR": DbColumnType.STRING,
"NVARCHAR": DbColumnType.STRING,
"STRING": DbColumnType.STRING,
"TEXT": DbColumnType.STRING,
"NTEXT": DbColumnType.STRING,
# numeric
"INT": DbColumnType.NUMERIC,
"BIGINT": DbColumnType.NUMERIC,
"FLOAT": DbColumnType.NUMERIC,
"DECIMAL": DbColumnType.NUMERIC,
"MONEY": DbColumnType.NUMERIC,
# temporal
"DATE": DbColumnType.TEMPORAL,
"DATETIME": DbColumnType.TEMPORAL,
"TIME": DbColumnType.TEMPORAL,
"TIMESTAMP": DbColumnType.TEMPORAL,
}
tbl = SqlaTable(table_name="col_type_test_tbl", database=get_example_database())
for str_type, db_col_type in test_cases.items():
col = TableColumn(column_name="foo", type=str_type, table=tbl)
self.assertEqual(col.is_temporal, db_col_type == DbColumnType.TEMPORAL)
self.assertEqual(col.is_numeric, db_col_type == DbColumnType.NUMERIC)
self.assertEqual(col.is_string, db_col_type == DbColumnType.STRING)
@patch("superset.jinja_context.g")
def test_extra_cache_keys(self, flask_g):
flask_g.user.username = "abc"
base_query_obj = {
"granularity": None,
"from_dttm": None,
"to_dttm": None,
"groupby": ["user"],
"metrics": [],
"is_timeseries": False,
"filter": [],
}
# Table with Jinja callable.
table1 = SqlaTable(
table_name="test_has_extra_cache_keys_table",
sql="SELECT '{{ current_username() }}' as user",
database=get_example_database(),
)
query_obj = dict(**base_query_obj, extras={})
extra_cache_keys = table1.get_extra_cache_keys(query_obj)
self.assertTrue(table1.has_extra_cache_key_calls(query_obj))
assert extra_cache_keys == ["abc"]
# Table with Jinja callable disabled.
table2 = SqlaTable(
table_name="test_has_extra_cache_keys_disabled_table",
sql="SELECT '{{ current_username(False) }}' as user",
database=get_example_database(),
)
query_obj = dict(**base_query_obj, extras={})
extra_cache_keys = table2.get_extra_cache_keys(query_obj)
self.assertTrue(table2.has_extra_cache_key_calls(query_obj))
self.assertListEqual(extra_cache_keys, [])
# Table with no Jinja callable.
query = "SELECT 'abc' as user"
table3 = SqlaTable(
table_name="test_has_no_extra_cache_keys_table",
sql=query,
database=get_example_database(),
)
query_obj = dict(**base_query_obj, extras={"where": "(user != 'abc')"})
extra_cache_keys = table3.get_extra_cache_keys(query_obj)
self.assertFalse(table3.has_extra_cache_key_calls(query_obj))
self.assertListEqual(extra_cache_keys, [])
# With Jinja callable in SQL expression.
query_obj = dict(
**base_query_obj, extras={"where": "(user != '{{ current_username() }}')"}
)
extra_cache_keys = table3.get_extra_cache_keys(query_obj)
self.assertTrue(table3.has_extra_cache_key_calls(query_obj))
assert extra_cache_keys == ["abc"]
# Cleanup
for table in [table1, table2, table3]:
db.session.delete(table)
db.session.commit()
def test_where_operators(self):
class FilterTestCase(NamedTuple):
operator: str
value: Union[float, int, List[Any], str]
expected: str
filters: Tuple[FilterTestCase, ...] = (
FilterTestCase(FilterOperator.IS_NULL, "", "IS NULL"),
FilterTestCase(FilterOperator.IS_NOT_NULL, "", "IS NOT NULL"),
FilterTestCase(FilterOperator.GREATER_THAN, 0, "> 0"),
FilterTestCase(FilterOperator.GREATER_THAN_OR_EQUALS, 0, ">= 0"),
FilterTestCase(FilterOperator.LESS_THAN, 0, "< 0"),
FilterTestCase(FilterOperator.LESS_THAN_OR_EQUALS, 0, "<= 0"),
FilterTestCase(FilterOperator.EQUALS, 0, "= 0"),
FilterTestCase(FilterOperator.NOT_EQUALS, 0, "!= 0"),
FilterTestCase(FilterOperator.IN, ["1", "2"], "IN (1, 2)"),
FilterTestCase(FilterOperator.NOT_IN, ["1", "2"], "NOT IN (1, 2)"),
)
table = self.get_table_by_name("birth_names")
for filter_ in filters:
query_obj = {
"granularity": None,
"from_dttm": None,
"to_dttm": None,
"groupby": ["gender"],
"metrics": ["count"],
"is_timeseries": False,
"filter": [
{"col": "num", "op": filter_.operator, "val": filter_.value}
],
"extras": {},
}
sqla_query = table.get_sqla_query(**query_obj)
sql = table.database.compile_sqla_query(sqla_query.sqla_query)
self.assertIn(filter_.expected, sql)
def test_incorrect_jinja_syntax_raises_correct_exception(self):
query_obj = {
"granularity": None,
"from_dttm": None,
"to_dttm": None,
"groupby": ["user"],
"metrics": [],
"is_timeseries": False,
"filter": [],
"extras": {},
}
# Table with Jinja callable.
table = SqlaTable(
table_name="test_table",
sql="SELECT '{{ abcd xyz + 1 ASDF }}' as user",
database=get_example_database(),
)
# TODO(villebro): make it work with presto
if get_example_database().backend != "presto":
with pytest.raises(QueryObjectValidationError):
table.get_sqla_query(**query_obj)
def test_multiple_sql_statements_raises_exception(self):
base_query_obj = {
"granularity": None,
"from_dttm": None,
"to_dttm": None,
"groupby": ["grp"],
"metrics": [],
"is_timeseries": False,
"filter": [],
}
table = SqlaTable(
table_name="test_has_extra_cache_keys_table",
sql="SELECT 'foo' as grp, 1 as num; SELECT 'bar' as grp, 2 as num",
database=get_example_database(),
)
query_obj = dict(**base_query_obj, extras={})
with pytest.raises(QueryObjectValidationError):
table.get_sqla_query(**query_obj)
def test_dml_statement_raises_exception(self):
base_query_obj = {
"granularity": None,
"from_dttm": None,
"to_dttm": None,
"groupby": ["grp"],
"metrics": [],
"is_timeseries": False,
"filter": [],
}
table = SqlaTable(
table_name="test_has_extra_cache_keys_table",
sql="DELETE FROM foo",
database=get_example_database(),
)
query_obj = dict(**base_query_obj, extras={})
with pytest.raises(QueryObjectValidationError):
table.get_sqla_query(**query_obj)
def test_fetch_metadata_for_updated_virtual_table(self):
table = SqlaTable(
table_name="updated_sql_table",
database=get_example_database(),
sql="select 123 as intcol, 'abc' as strcol, 'abc' as mycase",
)
TableColumn(column_name="intcol", type="FLOAT", table=table)
TableColumn(column_name="oldcol", type="INT", table=table)
TableColumn(
column_name="expr",
expression="case when 1 then 1 else 0 end",
type="INT",
table=table,
)
TableColumn(
column_name="mycase",
expression="case when 1 then 1 else 0 end",
type="INT",
table=table,
)
# make sure the columns have been mapped properly
assert len(table.columns) == 4
table.fetch_metadata()
# assert that the removed column has been dropped and
# the physical and calculated columns are present
assert {col.column_name for col in table.columns} == {
"intcol",
"strcol",
"mycase",
"expr",
}
cols: Dict[str, TableColumn] = {col.column_name: col for col in table.columns}
# assert that the type for intcol has been updated (asserting CI types)
backend = get_example_database().backend
assert VIRTUAL_TABLE_INT_TYPES[backend].match(cols["intcol"].type)
# assert that the expression has been replaced with the new physical column
assert cols["mycase"].expression == ""
assert VIRTUAL_TABLE_STRING_TYPES[backend].match(cols["mycase"].type)
assert cols["expr"].expression == "case when 1 then 1 else 0 end"