forked from joshua-wu/deepfakes_faceswap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·69 lines (54 loc) · 2.06 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import cv2
import numpy
from utils import get_image_paths, load_images, stack_images
from training_data import get_training_data
from model import autoencoder_A
from model import autoencoder_B
from model import encoder, decoder_A, decoder_B
try:
encoder .load_weights( "models/encoder.h5" )
decoder_A.load_weights( "models/decoder_A.h5" )
decoder_B.load_weights( "models/decoder_B.h5" )
except:
pass
def save_model_weights():
encoder .save_weights( "models/encoder.h5" )
decoder_A.save_weights( "models/decoder_A.h5" )
decoder_B.save_weights( "models/decoder_B.h5" )
print( "save model weights" )
images_A = get_image_paths( "data/trump" )
images_B = get_image_paths( "data/cage" )
images_A = load_images( images_A ) / 255.0
images_B = load_images( images_B ) / 255.0
images_A += images_B.mean( axis=(0,1,2) ) - images_A.mean( axis=(0,1,2) )
print( "press 'q' to stop training and save model" )
for epoch in range(1000000):
batch_size = 64
warped_A, target_A = get_training_data( images_A, batch_size )
warped_B, target_B = get_training_data( images_B, batch_size )
loss_A = autoencoder_A.train_on_batch( warped_A, target_A )
loss_B = autoencoder_B.train_on_batch( warped_B, target_B )
print( loss_A, loss_B )
if epoch % 100 == 0:
save_model_weights()
test_A = target_A[0:14]
test_B = target_B[0:14]
figure_A = numpy.stack([
test_A,
autoencoder_A.predict( test_A ),
autoencoder_B.predict( test_A ),
], axis=1 )
figure_B = numpy.stack([
test_B,
autoencoder_B.predict( test_B ),
autoencoder_A.predict( test_B ),
], axis=1 )
figure = numpy.concatenate( [ figure_A, figure_B ], axis=0 )
figure = figure.reshape( (4,7) + figure.shape[1:] )
figure = stack_images( figure )
figure = numpy.clip( figure * 255, 0, 255 ).astype('uint8')
cv2.imshow( "", figure )
key = cv2.waitKey(1)
if key == ord('q'):
save_model_weights()
exit()