-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathdata_collector.py
237 lines (198 loc) · 6.96 KB
/
data_collector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import numpy as np
import configure as conf
from tqdm import tqdm
import DBP15K.preprocessor as preprocessor
def read_data(input_path, graph_dir_name, word_idx, if_increase_dct):
g1_triple_path = graph_dir_name + "triples_1"
g1_feature_path = graph_dir_name + "id_features_1"
g2_triple_path = graph_dir_name + "triples_2"
g2_feature_path = graph_dir_name + "id_features_2"
g1_map = preprocessor.gen_graph(g1_triple_path, g1_feature_path)
g2_map = preprocessor.gen_graph(g2_triple_path, g2_feature_path)
graphs_1 = []
graphs_2 = []
labels = []
with open(input_path, 'r') as fr:
lines = fr.readlines()
for _ in tqdm(range(len(lines))):
line = lines[_].strip()
info = line.split("\t")
id_1 = int(info[0])
id_2 = int(info[1])
label = int(info[2])
graph_1 = g1_map[id_1]
graph_2 = g2_map[id_2]
graph_1['g_id'] = id_1
graph_2['g_id'] = id_2
graphs_1.append(graph_1)
graphs_2.append(graph_2)
labels.append(label)
if if_increase_dct:
features = [graph_1['g_ids_features'], graph_2['g_ids_features']]
for f in features:
for id in f:
for w in f[id].split():
if w not in word_idx:
word_idx[w] = len(word_idx) + 1
return graphs_1, graphs_2, labels
def vectorize_data(word_idx, texts):
tv = []
for text in texts:
stv = []
for w in text.split():
if w not in word_idx:
stv.append(word_idx[conf.unknown_word])
else:
stv.append(word_idx[w])
tv.append(stv)
return tv
def batch_graph(graphs):
g_ids_features = {}
g_fw_adj = {}
g_bw_adj = {}
g_nodes = []
for g in graphs:
id_adj = g['g_adj']
features = g['g_ids_features']
nodes = []
# we first add all nodes into batch_graph and create a mapping from graph id to batch_graph id, this mapping will be
# used in the creation of fw_adj and bw_adj
id_gid_map = {}
offset = len(g_ids_features.keys())
for id in features.keys():
id = int(id)
g_ids_features[offset + id] = features[id]
id_gid_map[id] = offset + id
nodes.append(offset + id)
g_nodes.append(nodes)
for id in id_adj:
adj = id_adj[id]
id = int(id)
g_id = id_gid_map[id]
if g_id not in g_fw_adj:
g_fw_adj[g_id] = []
for t in adj:
t = int(t)
g_t = id_gid_map[t]
g_fw_adj[g_id].append(g_t)
if g_t not in g_bw_adj:
g_bw_adj[g_t] = []
g_bw_adj[g_t].append(g_id)
node_size = len(g_ids_features.keys())
for id in range(node_size):
if id not in g_fw_adj:
g_fw_adj[id] = []
if id not in g_bw_adj:
g_bw_adj[id] = []
graph = {}
graph['g_ids_features'] = g_ids_features
graph['g_nodes'] = g_nodes
graph['g_fw_adj'] = g_fw_adj
graph['g_bw_adj'] = g_bw_adj
return graph
def vectorize_label(labels):
lv = []
for label in labels:
if label == 0 or label == '0':
lv.append([1, 0])
elif label == 1 or label == '1':
lv.append([0, 1])
else:
print("error in vectoring the label")
lv = np.array(lv)
return lv
def vectorize_batch_graph(graph, word_idx):
# vectorize the graph feature and normalize the adj info
id_features = graph['g_ids_features']
gv = {}
nv = []
n_len_v = []
word_max_len = 0
for id in id_features:
feature = id_features[id]
word_max_len = max(word_max_len, len(feature.split()))
# word_max_len = min(word_max_len, conf.word_size_max)
for id in graph['g_ids_features']:
feature = graph['g_ids_features'][id]
fv = []
for token in feature.split():
if len(token) == 0:
continue
if token in word_idx:
fv.append(word_idx[token])
else:
fv.append(word_idx[conf.unknown_word])
if len(fv) > word_max_len:
n_len_v.append(word_max_len)
else:
n_len_v.append(len(fv))
for _ in range(word_max_len - len(fv)):
fv.append(0)
fv = fv[:word_max_len]
nv.append(fv)
# add an all-zero vector for the PAD node
nv.append([0 for temp in range(word_max_len)])
n_len_v.append(0)
gv['g_ids_features'] = np.array(nv)
gv['g_ids_feature_lens'] = np.array(n_len_v)
# ============== vectorize adj info ======================
g_fw_adj = graph['g_fw_adj']
g_fw_adj_v = []
degree_max_size = 0
for id in g_fw_adj:
degree_max_size = max(degree_max_size, len(g_fw_adj[id]))
g_bw_adj = graph['g_bw_adj']
for id in g_bw_adj:
degree_max_size = max(degree_max_size, len(g_bw_adj[id]))
degree_max_size = min(degree_max_size, conf.sample_size_per_layer)
for id in g_fw_adj:
adj = g_fw_adj[id]
for _ in range(degree_max_size - len(adj)):
adj.append(len(g_fw_adj.keys()))
adj = adj[:degree_max_size]
assert len(adj) == degree_max_size
g_fw_adj_v.append(adj)
# PAD node directs to the PAD node
g_fw_adj_v.append([len(g_fw_adj.keys()) for _ in range(degree_max_size)])
g_bw_adj_v = []
for id in g_bw_adj:
adj = g_bw_adj[id]
for _ in range(degree_max_size - len(adj)):
adj.append(len(g_bw_adj.keys()))
adj = adj[:degree_max_size]
assert len(adj) == degree_max_size
g_bw_adj_v.append(adj)
# PAD node directs to the PAD node
g_bw_adj_v.append([len(g_bw_adj.keys()) for _ in range(degree_max_size)])
# ============== vectorize nodes info ====================
g_nodes = graph['g_nodes']
graph_max_size = 0
for nodes in g_nodes:
graph_max_size = max(graph_max_size, len(nodes))
g_node_v = []
g_node_mask = []
entity_index = []
for nodes in g_nodes:
mask = [1 for _ in range(len(nodes))]
for _ in range(graph_max_size - len(nodes)):
nodes.append(len(g_fw_adj.keys()))
mask.append(0)
nodes = nodes[:graph_max_size]
mask = mask[:graph_max_size]
g_node_v.append(nodes)
g_node_mask.append(mask)
entity_index.append(0)
g_looking_table = []
global_count = 0
for mask in g_node_mask:
for item in mask:
if item == 1:
g_looking_table.append(global_count)
global_count += 1
gv['g_nodes'] =np.array(g_node_v)
gv['g_bw_adj'] = np.array(g_bw_adj_v)
gv['g_fw_adj'] = np.array(g_fw_adj_v)
gv['g_mask'] = np.array(g_node_mask)
gv['g_looking_table'] = np.array(g_looking_table)
gv['entity_index'] = entity_index
return gv