-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain_attribute_label.py
462 lines (432 loc) · 23.1 KB
/
train_attribute_label.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
import transformers
import torch
import os
import json
import time
import random
import argparse
import numpy as np
from datetime import datetime
import torch.nn as nn
from torch.nn import DataParallel
from tqdm import tqdm
import subprocess
# from torchcrf import CRF
import wandb
from gpt2_model import GPT2LMHeadModel
# wandb.init(project="attribute_label")
BOS = 50257
EOS = 50256
PAD_ID = 15636
MAX_LEN = 512
HIDDEN_SIZE = 768
# FIELD_LABEL_NUM = 6302 # wikibio dataset
# FIELD_LABEL_NUM = 134 # human 50 dataset
# FIELD_LABEL_NUM = 190 # human 100 dataset
# FIELD_LABEL_NUM = 259 # human 200 dataset
FIELD_LABEL_NUM = 457 # human 500 dataset
# FIELD_LABEL_NUM = 732 # human 2000 dataset
# FIELD_LABEL_NUM = 49 # books 50 dataset
# FIELD_LABEL_NUM = 73 # books 100 dataset
# FIELD_LABEL_NUM = 86 # books 200 dataset
# FIELD_LABEL_NUM = 108 # books 500 dataset
# FIELD_LABEL_NUM = 163 # books 2000 dataset
# FIELD_LABEL_NUM = 25 # songs 50 dataset
# FIELD_LABEL_NUM = 27 # songs 100 dataset
# FIELD_LABEL_NUM = 29 # songs 200 dataset
# FIELD_LABEL_NUM = 39 # songs 500 dataset
# FIELD_LABEL_NUM = 39 # songs 2000 dataset
def aeq(*args):
"""
Assert all arguments have the same value
"""
arguments = (arg for arg in args)
first = next(arguments)
assert all(arg == first for arg in arguments), \
"Not all arguments have the same value: " + str(args)
class FieldLabelClassify(nn.Module):
def __init__(self):
super(FieldLabelClassify, self).__init__()
self.linear_classify = nn.Linear(HIDDEN_SIZE, FIELD_LABEL_NUM, bias=True)
self.loss_fct = nn.CrossEntropyLoss()
self.dropout = torch.nn.Dropout(0.1)
# self.crf = CRF(FIELD_LABEL_NUM, batch_first=True)
def forward(self, hidden_states, field_labels, label_masks, entities_attr=None, entities_list=None, entities_len=None, entities_mask=None):
'''
shift_labels = torch.masked_select(field_labels, label_masks.bool()).contiguous()
label_masks = label_masks.unsqueeze(-1).expand(hidden_states.size())
attribute_hidden_states = torch.masked_select(hidden_states, label_masks.bool()).contiguous()
shift_logits = self.linear_classify(attribute_hidden_states.view(-1, HIDDEN_SIZE))
mask_loss = self.loss_fct(shift_logits, shift_labels.view(-1))
'''
if entities_attr is None:
# hidden_states = self.dropout(hidden_states)
# batch_size x seq_length x tag_num
mc_logits = self.linear_classify(hidden_states)
# mask_loss = -1 * self.crf(mc_logits, field_labels, mask=label_masks.bool(), reduction='mean')
shift_labels = torch.masked_select(field_labels, label_masks.bool()).contiguous()
label_masks = label_masks.unsqueeze(-1).expand(mc_logits.size())
shift_logits = torch.masked_select(mc_logits, label_masks.bool()).contiguous()
mask_loss = self.loss_fct(shift_logits.view(-1, FIELD_LABEL_NUM), shift_labels.view(-1))
else:
# calculate the entity hidden by get the sum of hidden from same entity
batch_ent, s_len_batch, num_entities = entities_list.size()
batch_len_ent, s_len_entities = entities_len.size()
aeq(batch_len_ent, batch_ent)
aeq(num_entities, s_len_entities)
ent_hidden_states = hidden_states.unsqueeze(1).expand(-1, num_entities, -1, -1)
ent_dim = entities_list.transpose(1, 2).unsqueeze(3).expand(-1, -1, -1, HIDDEN_SIZE)
ent_len_dim = entities_len.unsqueeze(2).expand(-1, -1, HIDDEN_SIZE)
ent_hidden = (ent_hidden_states * ent_dim).sum(2)
ent_hidden = ent_hidden / ent_len_dim
# map the hidden size to the label num
mc_logits = self.linear_classify(ent_hidden)
shift_labels = torch.masked_select(entities_attr, entities_mask).contiguous()
entities_mask = entities_mask.unsqueeze(-1).expand(mc_logits.size())
shift_logits = torch.masked_select(mc_logits, entities_mask).contiguous()
mask_loss = self.loss_fct(shift_logits.view(-1, FIELD_LABEL_NUM), shift_labels.view(-1))
return mask_loss
def rebuild_sent(line):
ws = []
for i, w in enumerate(line.split()):
if w[-1] == ',':
ws.append(w[:-1])
ws.append(',')
elif i == len(line.split()) - 1:
if w[-1] == '.':
ws.append(w[:-1])
ws.append('.')
else:
ws.append(w)
else:
ws.append(w)
return ' '.join(ws)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--device', default='0,1,2,3', type=str, required=False, help='设置使用哪些显卡')
parser.add_argument('--model_config', default='config/model_config_small.json', type=str, required=False,
help='选择模型参数')
parser.add_argument('--tokenizer_path', default='cache/vocab_small.txt', type=str, required=False, help='选择词库')
parser.add_argument('--raw_data_path', default='data/train.json', type=str, required=False, help='原始训练语料')
parser.add_argument('--tokenized_gold_train_path', default='data/', type=str, required=True,
help='训练集目标tokenized语料存放位置')
parser.add_argument('--text_mask_train_path', default='data/', type=str, required=True,
help='训练集构造文本mask文件存放位置')
parser.add_argument('--field_label_train_path', default='data/', type=str, required=True,
help='训练集构造tokenized语料存放位置')
parser.add_argument('--label_mask_train_path', default='data/', type=str, required=True,
help='训练集构造tokenized语料存放位置')
parser.add_argument('--tokenized_dev_path', default='data/', type=str, required=False,
help='验证集tokenized语料存放位置')
parser.add_argument('--src_dev', default='data/', type=str, required=False,
help='验证集输入语料存放位置')
parser.add_argument('--tgt_dev', default='data/', type=str, required=False,
help='验证集输出语料存放位置')
parser.add_argument('--log_file', default='data/', type=str, required=False,
help='log文件存放位置')
parser.add_argument('--epochs', default=5, type=int, required=False, help='训练循环')
parser.add_argument('--batch_size', default=8, type=int, required=False, help='训练batch size')
parser.add_argument('--lr', default=1.5e-4, type=float, required=False, help='学习率')
parser.add_argument('--warmup_steps', default=2000, type=int, required=False, help='warm up步数')
parser.add_argument('--seed', default=1234, type=int, required=False, help='random seed')
parser.add_argument('--log_step', default=1, type=int, required=False, help='多少步汇报一次loss')
parser.add_argument('--gradient_accumulation', default=1, type=int, required=False, help='梯度积累')
parser.add_argument('--fp16', action='store_true', help='混合精度')
parser.add_argument('--fp16_opt_level', default='O1', type=str, required=False)
parser.add_argument('--max_grad_norm', default=1.0, type=float, required=False)
parser.add_argument('--start_save_epoch', default=1, type=int, required=False, help='开始保存模型的轮数')
parser.add_argument('--start_eval_epoch', default=1, type=int, required=False, help='开始计算验证集BLEU值的轮数')
parser.add_argument('--output_dir', default='model/', type=str, required=False, help='模型输出路径')
parser.add_argument('--pretrained_model', default='', type=str, required=False, help='模型训练起点路径')
parser.add_argument('--shuffle', action='store_true', help='是否在每个epoch打乱batch顺序')
parser.add_argument('--segment', action='store_true', help='中文以词为单位')
args = parser.parse_args()
print('args:\n' + args.__repr__())
os.environ["CUDA_VISIBLE_DEVICES"] = args.device # 此处设置程序使用哪些显卡
model_config = transformers.modeling_gpt2.GPT2Config.from_json_file(args.model_config)
print('config:\n' + model_config.to_json_string())
full_tokenizer = transformers.GPT2Tokenizer.from_pretrained(args.tokenizer_path)
full_tokenizer.add_tokens(['<table2text>'])
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('using device:', device)
tokenized_gold_train_path = args.tokenized_gold_train_path
text_mask_train_path = args.text_mask_train_path
field_label_train_path = args.field_label_train_path
label_mask_train_path = args.label_mask_train_path
src_dev = args.src_dev
tgt_dev = args.tgt_dev
epochs = args.epochs
batch_size = args.batch_size
lr = args.lr
warmup_steps = args.warmup_steps
log_step = args.log_step
gradient_accumulation = args.gradient_accumulation
fp16 = args.fp16 # 不支持半精度的显卡请勿打开
fp16_opt_level = args.fp16_opt_level
max_grad_norm = args.max_grad_norm
output_dir = args.output_dir
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
if not args.pretrained_model:
model = transformers.modeling_gpt2.GPT2LMHeadModel(config=model_config)
else:
# model = transformers.modeling_gpt2.GPT2LMHeadModel.from_pretrained(args.pretrained_model)
model = GPT2LMHeadModel.from_pretrained(args.pretrained_model)
model.transformer.output_hidden_states = True
model.resize_token_embeddings(len(full_tokenizer))
model.train()
model.to(device)
multi_gpu = False
field_label_classify = FieldLabelClassify()
field_label_classify.train()
field_label_classify.to(device)
print('calculating total steps')
with open(tokenized_gold_train_path, 'r') as f:
gold_train_token_lines = [[int(id) for id in line.strip().split()] for line in f.readlines()]
total_steps = len(gold_train_token_lines) * epochs / batch_size
with open(text_mask_train_path, 'r') as f:
text_mask_train_lines = [[int(id) for id in line.strip().split()] for line in f.readlines()]
for line1, line2 in zip(gold_train_token_lines, text_mask_train_lines):
assert len(line1) == len(line2)
with open(field_label_train_path, 'r') as f:
replace_flag_train_lines = [[int(id) for id in line.strip().split()] for line in f.readlines()]
with open(label_mask_train_path, 'r') as f:
replace_mask_train_lines = [[int(id) for id in line.strip().split()] for line in f.readlines()]
optimizer = transformers.AdamW([{'params': model.parameters()}, {'params': field_label_classify.parameters(), 'lr': 1.5e-4}], lr=lr, correct_bias=True)
scheduler = transformers.get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=total_steps)
# scheduler = transformers.get_constant_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps)
print('total steps = {}'.format(total_steps))
with open(src_dev, 'r') as fr:
dev_srcs = [line.strip() for line in fr.readlines()]
log_file = open(args.log_file, 'a')
if fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=fp16_opt_level)
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
model = DataParallel(model)
field_label_classify = DataParallel(field_label_classify)
multi_gpu = True
print('starting training')
running_loss = 0
# prepare train batch data
train_batch_data = []
for step in range(len(gold_train_token_lines) // batch_size):
gold_batch = gold_train_token_lines[step * batch_size: (step + 1) * batch_size]
text_mask_batch = text_mask_train_lines[step * batch_size: (step + 1) * batch_size]
field_label_batch = replace_flag_train_lines[step * batch_size: (step + 1) * batch_size]
label_mask_batch = replace_mask_train_lines[step * batch_size: (step + 1) * batch_size]
gold_max_length = 0
for ids in gold_batch:
if len(ids) > gold_max_length:
gold_max_length = len(ids)
batch_labels = []
batch_inputs = []
text_masks = []
gold_attention_masks = []
field_labels = []
label_masks = []
batch_entities_len = []
batch_entities_lst = []
batch_entities_attr = []
for gold_ids, text_mask_ids, field_label_ids, label_mask_ids in zip(gold_batch, text_mask_batch, field_label_batch, label_mask_batch):
int_ids_for_labels = [PAD_ID] * gold_max_length
int_ids_for_inputs = [PAD_ID] * gold_max_length
text_mask = [0] * gold_max_length
field_label = [0] * gold_max_length
gold_attention_mask = [0] * gold_max_length
label_mask = [0] * gold_max_length
entities_len = []
entities_index = []
entities_attr = []
entity_len = 0
entity_id = -1
attribute = -1
for x_i, x in enumerate(gold_ids):
int_ids_for_labels[x_i] = x
int_ids_for_inputs[x_i] = x
text_mask[x_i] = text_mask_ids[x_i]
gold_attention_mask[x_i] = 1
field_label[x_i] = field_label_ids[x_i]
label_mask[x_i] = label_mask_ids[x_i]
for attr_id in field_label:
if attribute != attr_id:
attribute = attr_id
entities_attr.append(attr_id)
if entity_len != 0:
entities_len.append(entity_len)
entities_index.extend([entity_id] * entity_len)
entity_len = 1
entity_id += 1
else:
entity_len += 1
if entity_len != 0:
entities_len.append(entity_len)
entities_index.extend([entity_id] * entity_len)
batch_labels.append(int_ids_for_labels)
batch_inputs.append(int_ids_for_inputs)
text_masks.append(text_mask)
gold_attention_masks.append(gold_attention_mask)
field_labels.append(field_label)
label_masks.append(label_mask)
batch_entities_len.append(entities_len)
batch_entities_lst.append(entities_index)
batch_entities_attr.append(entities_attr)
max_entity_cnt = max([len(entities_len) for entities_len in batch_entities_len])
batch_entities_mask = [[0] * max_entity_cnt for _ in range(batch_size)]
new_batch_entities_len = [[1] * max_entity_cnt for _ in range(batch_size)]
new_batch_entities_attr = [[0] * max_entity_cnt for _ in range(batch_size)]
for b_i, entities_len in enumerate(batch_entities_len):
for e_i, entity_len in enumerate(entities_len):
new_batch_entities_len[b_i][e_i] = entity_len
new_batch_entities_attr[b_i][e_i] = batch_entities_attr[b_i][e_i]
for e_i in range(len(entities_len[:-1])):
batch_entities_mask[b_i][e_i] = 1
train_batch_data.append([batch_labels, batch_inputs, text_masks, gold_attention_masks, field_labels, label_masks, batch_entities_lst, new_batch_entities_len, new_batch_entities_attr, batch_entities_mask])
dev_epoch2bleu = {}
for epoch in range(epochs):
print('epoch {}'.format(epoch + 1))
now = datetime.now()
print('time: {}'.format(now))
piece_num = 0
if args.shuffle:
random.shuffle(train_batch_data)
for step in range(len(gold_train_token_lines) // batch_size):
# prepare data
batch_labels = train_batch_data[step][0]
batch_inputs = train_batch_data[step][1]
text_masks = train_batch_data[step][2]
gold_attention_masks = train_batch_data[step][3]
field_labels = train_batch_data[step][4]
label_masks = train_batch_data[step][5]
entities_lst = train_batch_data[step][6]
entities_len = train_batch_data[step][7]
entities_attr = train_batch_data[step][8]
entities_mask = train_batch_data[step][9]
batch_labels = torch.tensor(batch_labels).long().to(device)
batch_inputs = torch.tensor(batch_inputs).long().to(device)
text_masks = torch.tensor(text_masks).bool().to(device)
gold_attention_masks = torch.tensor(gold_attention_masks).bool().to(device)
field_labels = torch.tensor(field_labels).long().to(device)
label_masks = torch.tensor(label_masks).bool().to(device)
src_size = len(entities_lst[0])
entities_size = len(entities_len[0])
entities_mapping = torch.zeros(batch_size, src_size, entities_size).to(device)
for i, sent in enumerate(entities_lst):
for j, t in enumerate(sent):
entities_mapping[i, j, t]
entities_len = torch.tensor(entities_len).float().to(device)
entities_attr = torch.tensor(entities_attr).long().to(device)
entities_mask = torch.tensor(entities_mask).bool().to(device)
# LM forward pass
assert batch_inputs.size() == batch_labels.size() == gold_attention_masks.size()
outputs = model.forward(input_ids=batch_inputs, labels=batch_labels, attention_mask=gold_attention_masks, loss_mask=text_masks)
lm_loss, _ = outputs[:2]
hidden_states = outputs[3][-1]
if epoch >= 20:
flc_loss = field_label_classify(hidden_states, field_labels, label_masks)
# flc_loss = field_label_classify(hidden_states, field_labels, label_masks, entities_attr, entities_mapping, entities_len, entities_mask)
# get loss
if multi_gpu:
lm_loss = lm_loss.mean()
if epoch >= 20:
flc_loss = flc_loss.mean()
if gradient_accumulation > 1:
lm_loss = lm_loss / gradient_accumulation
if epoch >= 20:
flc_loss = flc_loss / gradient_accumulation
if epoch >= 20:
loss = lm_loss + 0.2 * flc_loss
else:
loss = lm_loss
# loss backward
if fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), max_grad_norm)
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)
# optimizer step
if (step + 1) % gradient_accumulation == 0:
running_loss += loss.item()
optimizer.step()
optimizer.zero_grad()
scheduler.step()
if (step + 1) % log_step == 0:
print('now time: {}:{}. Step {} of piece {} of epoch {}, loss {}'.format(
datetime.now().hour,
datetime.now().minute,
(step + 1) // gradient_accumulation,
piece_num,
epoch + 1,
running_loss / log_step))
running_loss = 0
piece_num += 1
if epoch + 1 >= args.start_save_epoch:
print('saving model for epoch {}'.format(epoch + 1))
if not os.path.exists(output_dir + 'model_epoch{}'.format(epoch + 1)):
os.mkdir(output_dir + 'model_epoch{}'.format(epoch + 1))
model_to_save = model.module if hasattr(model, 'module') else model
model_to_save.save_pretrained(output_dir + 'model_epoch{}'.format(epoch + 1))
if epoch + 1 >= args.start_eval_epoch:
new_model = transformers.modeling_gpt2.GPT2LMHeadModel.from_pretrained(output_dir + 'model_epoch{}'.format(epoch + 1))
new_model.to(device)
new_model.eval()
total_steps = len(dev_srcs)
output_lst = []
with torch.no_grad():
for step in tqdm(range(total_steps)):
dev_inputs = dev_srcs[step: step + 1]
input_ids = []
for dev_input in dev_inputs:
input_ids.append(full_tokenizer.encode(dev_input))
if len(input_ids[0]) > MAX_LEN:
input_ids[0] = input_ids[0][:MAX_LEN] + [BOS]
print('source input over max length')
src_lengths = len(input_ids[0])
batch_input = torch.tensor(input_ids).long().to(device)
# output = new_model.generate(batch_input, do_sample=False, max_length=src_lengths + 50, num_beams=5)
output = new_model.generate(batch_input, do_sample=False, max_length=src_lengths + 50, num_beams=5, eos_token_ids=EOS)
output_ids = output.tolist()[0]
try:
tgt_ids = output_ids[(output_ids.index(BOS) + 1): output_ids.index(EOS)]
except:
tgt_ids = output_ids[(output_ids.index(BOS) + 1):]
output_sent = rebuild_sent(full_tokenizer.decode(tgt_ids))
output_lst.append(output_sent)
save_time = time.time()
with open('gen/dev/dev_gen_%f.txt'%save_time, 'w') as fw:
fw.write('\n'.join(output_lst))
cmd = "perl %s %s" % ("multi-bleu.perl", tgt_dev)
p = subprocess.Popen(cmd.split(), stdin=open('gen/dev/dev_gen_%f.txt'%save_time), stdout=subprocess.PIPE)
lines = p.stdout.readlines()
if len(lines) > 0:
print(lines[0].decode("utf-8"))
dev_bleu = float(str(lines[0]).split()[2].split(",")[0])
dev_epoch2bleu[epoch + 1] = dev_bleu
# log_file.write('epoch%d bleu: %.2f\n'%(epoch + 1, dev_bleu))
log_file.write('epoch%d '%(epoch + 1) + lines[0].decode("utf-8"))
log_file.flush()
# wandb.log({'epoch': epoch + 1, 'bleu': dev_bleu})
print('epoch {} finished'.format(epoch + 1))
then = datetime.now()
print('time: {}'.format(then))
print('time for one epoch: {}'.format(then - now))
print('training finished')
'''
if not os.path.exists(output_dir + 'final_model'):
os.mkdir(output_dir + 'final_model')
model_to_save = model.module if hasattr(model, 'module') else model
model_to_save.save_pretrained(output_dir + 'final_model')
'''
sorted_dev_epoch2bleu = sorted(dev_epoch2bleu.items(), key=lambda item: item[1], reverse=True)
max_bleu_epoch, max_bleu_score = sorted_dev_epoch2bleu[0]
log_file.write('epoch%d model has highest bleu score: %.2f'%(max_bleu_epoch, max_bleu_score))
log_file.close()
if __name__ == '__main__':
main()