|
| 1 | +# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. |
| 2 | +import math |
| 3 | +from typing import Tuple |
| 4 | + |
| 5 | +import torch |
| 6 | +from pytorch3d.renderer import look_at_view_transform, PerspectiveCameras |
| 7 | + |
| 8 | + |
| 9 | +def generate_eval_video_cameras( |
| 10 | + train_dataset, |
| 11 | + n_eval_cams: int = 100, |
| 12 | + trajectory_type: str = "figure_eight", |
| 13 | + trajectory_scale: float = 0.2, |
| 14 | + scene_center: Tuple[float, float, float] = (0.0, 0.0, 0.0), |
| 15 | + up: Tuple[float, float, float] = (0.0, 0.0, 1.0), |
| 16 | +) -> dict: |
| 17 | + """ |
| 18 | + Generate a camera trajectory for visualizing a NeRF model. |
| 19 | +
|
| 20 | + Args: |
| 21 | + train_dataset: The training dataset object. |
| 22 | + n_eval_cams: Number of cameras in the trajectory. |
| 23 | + trajectory_type: The type of the camera trajectory. Can be one of: |
| 24 | + circular: Rotating around the center of the scene at a fixed radius. |
| 25 | + figure_eight: Figure-of-8 trajectory around the center of the |
| 26 | + central camera of the training dataset. |
| 27 | + trefoil_knot: Same as 'figure_eight', but the trajectory has a shape |
| 28 | + of a trefoil knot (https://en.wikipedia.org/wiki/Trefoil_knot). |
| 29 | + figure_eight_knot: Same as 'figure_eight', but the trajectory has a shape |
| 30 | + of a figure-eight knot |
| 31 | + (https://en.wikipedia.org/wiki/Figure-eight_knot_(mathematics)). |
| 32 | + trajectory_scale: The extent of the trajectory. |
| 33 | + up: The "up" vector of the scene (=the normal of the scene floor). |
| 34 | + Active for the `trajectory_type="circular"`. |
| 35 | + scene_center: The center of the scene in world coordinates which all |
| 36 | + the cameras from the generated trajectory look at. |
| 37 | + Returns: |
| 38 | + Dictionary of camera instances which can be used as the test dataset |
| 39 | + """ |
| 40 | + if trajectory_type in ("figure_eight", "trefoil_knot", "figure_eight_knot"): |
| 41 | + cam_centers = torch.cat( |
| 42 | + [e["camera"].get_camera_center() for e in train_dataset] |
| 43 | + ) |
| 44 | + # get the nearest camera center to the mean of centers |
| 45 | + mean_camera_idx = ( |
| 46 | + ((cam_centers - cam_centers.mean(dim=0)[None]) ** 2) |
| 47 | + .sum(dim=1) |
| 48 | + .min(dim=0) |
| 49 | + .indices |
| 50 | + ) |
| 51 | + # generate the knot trajectory in canonical coords |
| 52 | + time = torch.linspace(0, 2 * math.pi, n_eval_cams + 1)[:n_eval_cams] |
| 53 | + if trajectory_type == "trefoil_knot": |
| 54 | + traj = _trefoil_knot(time) |
| 55 | + elif trajectory_type == "figure_eight_knot": |
| 56 | + traj = _figure_eight_knot(time) |
| 57 | + elif trajectory_type == "figure_eight": |
| 58 | + traj = _figure_eight(time) |
| 59 | + traj[:, 2] -= traj[:, 2].max() |
| 60 | + |
| 61 | + # transform the canonical knot to the coord frame of the mean camera |
| 62 | + traj_trans = ( |
| 63 | + train_dataset[mean_camera_idx]["camera"] |
| 64 | + .get_world_to_view_transform() |
| 65 | + .inverse() |
| 66 | + ) |
| 67 | + traj_trans = traj_trans.scale(cam_centers.std(dim=0).mean() * trajectory_scale) |
| 68 | + traj = traj_trans.transform_points(traj) |
| 69 | + |
| 70 | + elif trajectory_type == "circular": |
| 71 | + cam_centers = torch.cat( |
| 72 | + [e["camera"].get_camera_center() for e in train_dataset] |
| 73 | + ) |
| 74 | + |
| 75 | + # fit plane to the camera centers |
| 76 | + plane_mean = cam_centers.mean(dim=0) |
| 77 | + cam_centers_c = cam_centers - plane_mean[None] |
| 78 | + |
| 79 | + if up is not None: |
| 80 | + # us the up vector instad of the plane through the camera centers |
| 81 | + plane_normal = torch.FloatTensor(up) |
| 82 | + else: |
| 83 | + cov = (cam_centers_c.t() @ cam_centers_c) / cam_centers_c.shape[0] |
| 84 | + _, e_vec = torch.symeig(cov, eigenvectors=True) |
| 85 | + plane_normal = e_vec[:, 0] |
| 86 | + |
| 87 | + plane_dist = (plane_normal[None] * cam_centers_c).sum(dim=-1) |
| 88 | + cam_centers_on_plane = cam_centers_c - plane_dist[:, None] * plane_normal[None] |
| 89 | + |
| 90 | + cov = ( |
| 91 | + cam_centers_on_plane.t() @ cam_centers_on_plane |
| 92 | + ) / cam_centers_on_plane.shape[0] |
| 93 | + _, e_vec = torch.symeig(cov, eigenvectors=True) |
| 94 | + traj_radius = (cam_centers_on_plane ** 2).sum(dim=1).sqrt().mean() |
| 95 | + angle = torch.linspace(0, 2.0 * math.pi, n_eval_cams) |
| 96 | + traj = traj_radius * torch.stack( |
| 97 | + (torch.zeros_like(angle), angle.cos(), angle.sin()), dim=-1 |
| 98 | + ) |
| 99 | + traj = traj @ e_vec.t() + plane_mean[None] |
| 100 | + |
| 101 | + else: |
| 102 | + raise ValueError(f"Uknown trajectory_type {trajectory_type}.") |
| 103 | + |
| 104 | + # point all cameras towards the center of the scene |
| 105 | + R, T = look_at_view_transform( |
| 106 | + eye=traj, |
| 107 | + at=(scene_center,), # (1, 3) |
| 108 | + up=(up,), # (1, 3) |
| 109 | + device=traj.device, |
| 110 | + ) |
| 111 | + |
| 112 | + # get the average focal length and principal point |
| 113 | + focal = torch.cat([e["camera"].focal_length for e in train_dataset]).mean(dim=0) |
| 114 | + p0 = torch.cat([e["camera"].principal_point for e in train_dataset]).mean(dim=0) |
| 115 | + |
| 116 | + # assemble the dataset |
| 117 | + test_dataset = [ |
| 118 | + { |
| 119 | + "image": None, |
| 120 | + "camera": PerspectiveCameras( |
| 121 | + focal_length=focal[None], |
| 122 | + principal_point=p0[None], |
| 123 | + R=R_[None], |
| 124 | + T=T_[None], |
| 125 | + ), |
| 126 | + "camera_idx": i, |
| 127 | + } |
| 128 | + for i, (R_, T_) in enumerate(zip(R, T)) |
| 129 | + ] |
| 130 | + |
| 131 | + return test_dataset |
| 132 | + |
| 133 | + |
| 134 | +def _figure_eight_knot(t: torch.Tensor, z_scale: float = 0.5): |
| 135 | + x = (2 + (2 * t).cos()) * (3 * t).cos() |
| 136 | + y = (2 + (2 * t).cos()) * (3 * t).sin() |
| 137 | + z = (4 * t).sin() * z_scale |
| 138 | + return torch.stack((x, y, z), dim=-1) |
| 139 | + |
| 140 | + |
| 141 | +def _trefoil_knot(t: torch.Tensor, z_scale: float = 0.5): |
| 142 | + x = t.sin() + 2 * (2 * t).sin() |
| 143 | + y = t.cos() - 2 * (2 * t).cos() |
| 144 | + z = -(3 * t).sin() * z_scale |
| 145 | + return torch.stack((x, y, z), dim=-1) |
| 146 | + |
| 147 | + |
| 148 | +def _figure_eight(t: torch.Tensor, z_scale: float = 0.5): |
| 149 | + x = t.cos() |
| 150 | + y = (2 * t).sin() / 2 |
| 151 | + z = t.sin() * z_scale |
| 152 | + return torch.stack((x, y, z), dim=-1) |
0 commit comments