Skip to content

Commit 6662666

Browse files
committed
add: 451. 根据字符出现频率排序
1 parent dfd2a11 commit 6662666

File tree

2 files changed

+167
-0
lines changed

2 files changed

+167
-0
lines changed

README.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -248,6 +248,7 @@
248248

249249
- [x] [【day-54】215.数组中的第 K 个最大元素](./medium/heap/54.kth-largest-element-in-an-array.md)
250250
- [x] [【day-56】23.合并K个升序链表](./medium/heap/56.merge-k-sorted-lists.md)
251+
- [x] [【day-57】451.根据字符出现频率排序](./medium/heap/57.sort-characters-by-frequency.md)
251252
- [x] [【day-58】378. 有序矩阵中第K小的元素](./medium/heap/58.kth-smallest-element-in-a-sorted-matrix.md)
252253

253254
## 专题篇
Lines changed: 166 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,166 @@
1+
# 451. 根据字符出现频率排序
2+
3+
https://leetcode-cn.com/problems/sort-characters-by-frequency/
4+
5+
- [451. 根据字符出现频率排序](#451-根据字符出现频率排序)
6+
- [题目描述](#题目描述)
7+
- [方法1:哈希表+堆](#方法1哈希表堆)
8+
- [思路](#思路)
9+
- [复杂度分析](#复杂度分析)
10+
- [代码](#代码)
11+
12+
## 题目描述
13+
14+
```
15+
给定一个字符串,请将字符串里的字符按照出现的频率降序排列。
16+
17+
示例 1:
18+
19+
输入:
20+
"tree"
21+
22+
输出:
23+
"eert"
24+
25+
解释:
26+
'e'出现两次,'r'和't'都只出现一次。
27+
因此'e'必须出现在'r'和't'之前。此外,"eetr"也是一个有效的答案。
28+
示例 2:
29+
30+
输入:
31+
"cccaaa"
32+
33+
输出:
34+
"cccaaa"
35+
36+
解释:
37+
'c'和'a'都出现三次。此外,"aaaccc"也是有效的答案。
38+
注意"cacaca"是不正确的,因为相同的字母必须放在一起。
39+
示例 3:
40+
41+
输入:
42+
"Aabb"
43+
44+
输出:
45+
"bbAa"
46+
47+
解释:
48+
此外,"bbaA"也是一个有效的答案,但"Aabb"是不正确的。
49+
注意'A'和'a'被认为是两种不同的字符。
50+
51+
来源:力扣(LeetCode)
52+
链接:https://leetcode-cn.com/problems/sort-characters-by-frequency
53+
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
54+
```
55+
56+
## 方法1:哈希表+堆
57+
58+
### 思路
59+
60+
- 用哈希表来记录每个字符的出现次数
61+
- 以字符出现次数建立一个大顶堆
62+
- 一边弹出堆顶,一边构建新的字符串
63+
64+
### 复杂度分析
65+
66+
- 时间复杂度:$O(n+klogk)$,n 是字符串的长度,k 是字符串中字符集的大小。
67+
- 空间复杂度:$O(k)$,k 是字符串中字符集的大小,堆的大小。
68+
69+
### 代码
70+
71+
JavaScript Code
72+
73+
```js
74+
/**
75+
* @param {string} s
76+
* @return {string}
77+
*/
78+
var frequencySort = function (s) {
79+
const map = {}
80+
81+
for (let i = 0; i < s.length; i++) {
82+
const c = s[i];
83+
map[c] = (map[c] || 0) + 1
84+
}
85+
86+
// 堆的数据结构 [char, count]
87+
const list = Object.keys(map).map(c => [c, map[c]])
88+
const heap = new MaxHeap(list, function comparator(inserted, compared) {
89+
return inserted[1] < compared[1];
90+
});
91+
92+
let str = ''
93+
while (heap.size() > 0) {
94+
const [char, cnt] = heap.pop();
95+
str += char.repeat(cnt)
96+
}
97+
return str
98+
};
99+
100+
// **************************************************
101+
102+
class Heap {
103+
constructor(list = [], comparator) {
104+
this.list = list;
105+
this.comparator = comparator;
106+
107+
this.init();
108+
}
109+
110+
init() {
111+
const size = this.size();
112+
for (let i = Math.floor(size / 2) - 1; i >= 0; i--) {
113+
this.heapify(this.list, size, i);
114+
}
115+
}
116+
117+
insert(n) {
118+
this.list.push(n);
119+
const size = this.size();
120+
for (let i = Math.floor(size / 2) - 1; i >= 0; i--) {
121+
this.heapify(this.list, size, i);
122+
}
123+
}
124+
125+
peek() {
126+
return this.list[0];
127+
}
128+
129+
pop() {
130+
const last = this.list.pop();
131+
if (this.size() === 0) return last;
132+
const returnItem = this.list[0];
133+
this.list[0] = last;
134+
this.heapify(this.list, this.size(), 0);
135+
return returnItem;
136+
}
137+
138+
size() {
139+
return this.list.length;
140+
}
141+
}
142+
143+
class MaxHeap extends Heap {
144+
constructor(list, comparator) {
145+
super(list, comparator);
146+
}
147+
148+
heapify(arr, size, i) {
149+
let largest = i;
150+
const left = Math.floor(i * 2 + 1);
151+
const right = Math.floor(i * 2 + 2);
152+
153+
if (left < size && this.comparator(arr[largest], arr[left]))
154+
largest = left;
155+
if (right < size && this.comparator(arr[largest], arr[right]))
156+
largest = right;
157+
158+
if (largest !== i) {
159+
[arr[largest], arr[i]] = [arr[i], arr[largest]];
160+
this.heapify(arr, size, largest);
161+
}
162+
}
163+
}
164+
```
165+
166+
更多题解可以访问:[https://github.com/suukii/91-days-algorithm](https://github.com/suukii/91-days-algorithm)

0 commit comments

Comments
 (0)