-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathflowSCluster.py
180 lines (148 loc) · 4.95 KB
/
flowSCluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# -*- coding: utf-8 -*-
import os
import math
import csv
import psycopg2
import time
import sys
#读取OD点坐标
def readData(fileName):
data = []
w = []
lst = []
let = []
with open(fileName, 'r') as f:
while True:
line = f.readline()
if line:
sl = line.split(',')
if len(sl) > 1:
d = [float(sl[1]),float(sl[2]),float(sl[3]),float(sl[4])]
data.append(d)
lst.append(int(sl[5]))
let.append(int(sl[6]))
w.append(int(sl[-1]))
else:
break
return data, lst, let, w
#计算第i个数据中点的k个近邻点,返回近邻点序号列表
def KNN(i, k):
conn = psycopg2.connect(database="flow clustering", user="postgres", password="123", host='localhost', port="5432")
cur = conn.cursor()
cur.execute('select tgid, midpnt <-> (select midpnt from taxi_odt where tgid = '+str(i)+') dist from taxi_odt order by dist limit '+str(k+1)+';')
results = cur.fetchall()
n = []
for row in results:
if row[0] != i:
n.append(row[0])
conn.commit()
cur.close()
conn.close()
return n
#计算cluster的中心流坐标
def calcClusterFlow(c, data):
ox = 0
oy = 0
dx = 0
dy = 0
for k in c:
ox += data[k][0]
oy += data[k][1]
dx += data[k][2]
dy += data[k][3]
d = float(len(c))
ox /= d
oy /= d
dx /= d
dy /= d
return ox, oy, dx, dy
def flowSim(vi, vj, alpha):
leni = math.sqrt((vi[0]**2+vi[1]**2))
lenj = math.sqrt((vj[0]**2+vj[1]**2))
dv = math.sqrt((vi[0] - vj[0]) ** 2 + (vi[1] - vj[1]) ** 2)
if leni > lenj:
return dv/(alpha*leni)
else:
return dv/(alpha*lenj)
#计算clusterID为ci和cj的两个类的相似性
def clusterSim(ci, cj, data, alpha):
oix, oiy, dix, diy = calcClusterFlow(ci, data)
ojx, ojy, djx, djy = calcClusterFlow(cj, data)
vi = [dix-oix, diy-oiy]
vj = [djx-ojx, djy-ojy]
return flowSim(vi, vj, alpha)
#合并相似度高的类
def merge(c, ci, cj, l):
#保留小数字的clusterID
if ci > cj:
ci, cj = cj, ci
for lid in c[cj]:
l[lid] = ci
c[ci].append(lid)
c.pop(cj)
#输出带类标签的OD数据到csv格式文件
def outputSLabeledData(filename, data, l, lst, let, w):
rf = open(filename, 'w', newline='')
sheet = csv.writer(rf)
sheet.writerow(['id','x1','y1','x2','y2','st','et','w','cluster'])
for i in range(len(data)):
r = [i]
r.extend(data[i])
r.append(lst[i])
r.append(let[i])
r.append(w[i])
r.append(l[i])
sheet.writerow(r)
rf.close()
#输出空间类数据,包括clusterID,类中心流坐标,包含的流的个数
def outputSClusterData(filename, data, c):
rf = open(filename, 'w', newline='')
sheet = csv.writer(rf)
sheet.writerow(['clusterID','ox','oy','dx','dy','flownum'])
for i in c.keys():
if len(c[i]) > 0:
ox, oy, dx, dy = calcClusterFlow(c[i], data)
sheet.writerow([i, ox, oy, dx, dy, len(c[i])])
rf.close()
if __name__ == '__main__':
print('Running ', sys.argv[0])
startTime = time.clock()
#空间聚类参数
alpha = 0.55 # 边界圆尺度系数
K = 25 # 近邻数
dataFile = 'taxi data(May 13)_processed.csv'
ldataFile = 's_ld(May 13) '+str(K)+' '+str(alpha)+'.csv'
clusterFile = 's_c(May 13) '+str(K)+' '+str(alpha)+'.csv'
print('file: ', dataFile)
print('alpha =', alpha, '; k =', K)
#----------------------------初始化------------------------------------
print('\ninitialize...')
data, lst, let, w = readData(dataFile)
dataLen = len(data)
c = {} #类集合
l = [] #数据标签集合
#----------------------------空间聚类----------------------------------
# 初始化时第i类只包括第i个数据,第i个数据的数据标签为第i类
for i in range(dataLen):
c[i] = [i] # 类编号(整数编号),包含的流编号
l.append(i) # 流的类标签
print('start clustering...')
st = time.clock()
for i in range(dataLen):
if i%5000 == 0:
et = time.clock()
print(i, '%.2f' % ((et-st)/60.0), 'mins')
st = et
knn = KNN(i, K) #计算k近邻点
for j in knn:
if l[i] != l[j]: #如果第i条流和第j条流不属于同一类
if not (clusterSim(c[l[i]], c[l[j]], data, alpha) > 1):
merge(c, l[i], l[j], l)
if os.path.exists(ldataFile):
os.remove(ldataFile)
if os.path.exists(clusterFile):
os.remove(clusterFile)
outputSLabeledData(ldataFile, data, l, lst, let, w)
outputSClusterData(clusterFile, data, c)
endTime = time.clock()
print('Total running time: %.2f' % ((endTime-startTime)/3600.0), 'hours')