forked from vlachoudis/bCNC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspline.py
469 lines (418 loc) · 15.1 KB
/
spline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
#!/usr/bin/python
# -*- coding: latin1 -*-
#
# Author: vvlachoudis@gmail.com
# Date: 20-Oct-2015
import sys
import bmath
#===============================================================================
# Cardinal cubic spline class
#===============================================================================
class CardinalSpline:
def __init__(self, A=0.5):
# The default matrix is the Catmull-Rom splin
# which is equal to Cardinal matrix
# for A = 0.5
#
# Note: Vasilis
# The A parameter should be the fraction in t where
# the second derivative is zero
self.setMatrix(A)
#-----------------------------------------------------------------------
# Set the matrix according to Cardinal
#-----------------------------------------------------------------------
def setMatrix(self, A=0.5):
self.M = []
self.M.append([ -A, 2.-A, A-2., A ])
self.M.append([2.*A, A-3., 3.-2.*A, -A ])
self.M.append([ -A, 0., A, 0.])
self.M.append([ 0., 1., 0, 0.])
#-----------------------------------------------------------------------
# Evaluate Cardinal spline at position t
# @param P list or tuple with 4 points y positions
# @param t [0..1] fraction of interval from points 1..2
# @param k index of starting 4 elements in P
# @return spline evaluation
#-----------------------------------------------------------------------
def __call__(self, P, t, k=1):
T = [t*t*t, t*t, t, 1.0]
R = [0.0]*4
for i in range(4):
for j in range(4):
R[i] += T[j] * self.M[j][i]
y = 0.0
for i in range(4):
y += R[i]*P[k+i-1]
return y
#-----------------------------------------------------------------------
# Return the coefficients of a 3rd degree polynomial
# f(x) = a t^3 + b t^2 + c t + d
# @return [a, b, c, d]
#-----------------------------------------------------------------------
def coefficients(self, P, k=1):
C = [0.0]*4
for i in range(4):
for j in range(4):
C[i] += self.M[i][j] * P[k+j-1]
return C
#-----------------------------------------------------------------------
# Evaluate the value of the spline using the coefficients
#-----------------------------------------------------------------------
def evaluate(self, C, t):
return ((C[0]*t + C[1])*t + C[2])*t + C[3]
#===============================================================================
# Cubic spline ensuring that the first and second derivative are continuous
# adapted from Penelope Manual Appending B.1
# It requires all the points (xi,yi) and the assumption on how to deal
# with the second derviative on the extremeties
# Option 1: assume zero as second derivative on both ends
# Option 2: assume the same as the next or previous one
#===============================================================================
class CubicSpline:
def __init__(self, X, Y):
self.X = X
self.Y = Y
self.n = len(X)
# Option #1
s1 = 0.0 # zero based = s0
sN = 0.0 # zero based = sN-1
# Construct the tri-diagonal matrix
A = []
B = [0.0] * (self.n-2)
for i in range(self.n-2):
A.append([0.0] * (self.n-2))
for i in range(1,self.n-1):
hi = self.h(i)
Hi = 2.0*(self.h(i-1) + hi)
j = i-1
A[j][j] = Hi
if i+1<self.n-1:
A[j][j+1] = A[j+1][j] = hi
if i==1:
B[j] = 6.*(self.d(i) - self.d(j)) - hi*s1
elif i<self.n-2:
B[j] = 6.*(self.d(i) - self.d(j))
else:
B[j] = 6.*(self.d(i) - self.d(j)) - hi*sN
# from pprint import pprint
# print "=========== A ============="
# pprint(A)
# print "=========== B ============="
# pprint(B)
# Solve by gauss elimination
# AA = bmath.Matrix(A)
# BB = []
# for b in B: BB.append([b])
# BB = bmath.Matrix(BB)
# print AA
# print BB
# AA.inv()
# print AA*BB
self.s = bmath.gauss(A,B)
self.s.insert(0,s1)
self.s.append(sN)
# print ">> s <<"
# pprint(self.s)
#-----------------------------------------------------------------------
def h(self, i):
return self.X[i+1] - self.X[i]
#-----------------------------------------------------------------------
def d(self, i):
return (self.Y[i+1] - self.Y[i]) / (self.X[i+1] - self.X[i])
#-----------------------------------------------------------------------
def coefficients(self, i):
"""return coefficients of cubic spline for interval i a*x**3+b*x**2+c*x+d"""
hi = self.h(i)
si = self.s[i]
si1 = self.s[i+1]
xi = self.X[i]
xi1 = self.X[i+1]
fi = self.Y[i]
fi1 = self.Y[i+1]
a = 1./(6.*hi)*(si*xi1**3 - si1*xi**3 + 6.*(fi*xi1 - fi1*xi)) + hi/6.*(si1*xi - si*xi1)
b = 1./(2.*hi)*(si1*xi**2 - si*xi1**2 + 2*(fi1 - fi)) + hi/6.*(si - si1)
c = 1./(2.*hi)*(si*xi1 - si1*xi)
d = 1./(6.*hi)*(si1-si)
return [d,c,b,a]
#-----------------------------------------------------------------------
def __call__(self, i, x):
# FIXME should interpolate to find the interval
C = self.coefficients(i)
return ((C[0]*x + C[1])*x + C[2])*x + C[3]
#-----------------------------------------------------------------------
# @return evaluation of cubic spline at x using coefficients C
#-----------------------------------------------------------------------
def evaluate(self, C, x):
return ((C[0]*x + C[1])*x + C[2])*x + C[3]
#-----------------------------------------------------------------------
# Return evaluated derivative at x using coefficients C
#-----------------------------------------------------------------------
def derivative(self, C, x):
a = 3.0*C[0] # derivative coefficients
b = 2.0*C[1] # ... for sampling with rejection
c = C[2]
return (3.0*C[0]*x + 2.0*C[1])*x + C[2]
# ------------------------------------------------------------------------------
# Convert a B-spline to polyline with a fixed number of segments
#
# FIXME to become adaptive
# ------------------------------------------------------------------------------
def spline2Polyline(xyz, degree, closed, segments, knots):
# Check if last point coincide with the first one
if (bmath.Vector(xyz[0])-bmath.Vector(xyz[-1])).length2() < 1e-10:
# it is already closed, treat it as open
closed = False
# FIXME we should verify if it is periodic,.... but...
# I am not sure :)
if closed:
xyz.extend(xyz[:degree])
knots = None
else:
# make base-1
knots.insert(0, 0)
npts = len(xyz)
if degree<1 or degree>3:
#print "invalid degree"
return None,None,None
# order:
k = degree+1
if npts < k:
#print "not enough control points"
return None,None,None
# resolution:
nseg = segments * npts
# WARNING: base 1
b = [0.0]*(npts*3+1) # polygon points
h = [1.0]*(npts+1) # set all homogeneous weighting factors to 1.0
p = [0.0]*(nseg*3+1) # returned curved points
i = 1
for pt in xyz:
b[i] = pt[0]
b[i+1] = pt[1]
b[i+2] = pt[2]
i +=3
#if periodic:
if closed:
_rbsplinu(npts, k, nseg, b, h, p, knots)
else:
_rbspline(npts, k, nseg, b, h, p, knots)
x = []
y = []
z = []
for i in range(1,3*nseg+1,3):
x.append(p[i])
y.append(p[i+1])
z.append(p[i+2])
# for i,xyz in enumerate(zip(x,y,z)):
# print i,xyz
return x,y,z
# ------------------------------------------------------------------------------
# Subroutine to generate a B-spline open knot vector with multiplicity
# equal to the order at the ends.
# c = order of the basis function
# n = the number of defining polygon vertices
# n+2 = index of x[] for the first occurence of the maximum knot vector value
# n+order = maximum value of the knot vector -- $n + c$
# x[] = array containing the knot vector
# ------------------------------------------------------------------------------
def _knot(n, order):
x = [0.0]*(n+order+1)
for i in range(2, n+order+1):
if i>order and i<n+2:
x[i] = x[i-1] + 1.0
else:
x[i] = x[i-1]
return x
# ------------------------------------------------------------------------------
# Subroutine to generate a B-spline uniform (periodic) knot vector.
#
# order = order of the basis function
# n = the number of defining polygon vertices
# n+order = maximum value of the knot vector -- $n + order$
# x[] = array containing the knot vector
# ------------------------------------------------------------------------------
def _knotu(n, order):
x = [0]*(n+order+1)
for i in range(2, n+order+1):
x[i] = float(i-1)
return x
# ------------------------------------------------------------------------------
# Subroutine to generate rational B-spline basis functions--open knot vector
# C code for An Introduction to NURBS
# by David F. Rogers. Copyright (C) 2000 David F. Rogers,
# All rights reserved.
# Name: rbasis
# Subroutines called: none
# Book reference: Chapter 4, Sec. 4. , p 296
# c = order of the B-spline basis function
# d = first term of the basis function recursion relation
# e = second term of the basis function recursion relation
# h[] = array containing the homogeneous weights
# npts = number of defining polygon vertices
# nplusc = constant -- npts + c -- maximum number of knot values
# r[] = array containing the rational basis functions
# r[1] contains the basis function associated with B1 etc.
# t = parameter value
# temp[] = temporary array
# x[] = knot vector
# ------------------------------------------------------------------------------
def _rbasis(c, t, npts, x, h, r):
nplusc = npts + c
temp = [0.0]*(nplusc+1)
# calculate the first order non-rational basis functions n[i]
for i in range(1, nplusc):
if x[i] <= t < x[i+1]:
temp[i] = 1.0
else:
temp[i] = 0.0
# calculate the higher order non-rational basis functions
for k in range(2,c+1):
for i in range(1,nplusc-k+1):
# if the lower order basis function is zero skip the calculation
if temp[i] != 0.0:
d = ((t-x[i])*temp[i])/(x[i+k-1]-x[i])
else:
d = 0.0
# if the lower order basis function is zero skip the calculation
if temp[i+1] != 0.0:
e = ((x[i+k]-t)*temp[i+1])/(x[i+k]-x[i+1])
else:
e = 0.0
temp[i] = d + e
# pick up last point
if t >= x[nplusc]:
temp[npts] = 1.0
# calculate sum for denominator of rational basis functions
s = 0.0
for i in range(1,npts+1):
s += temp[i]*h[i]
# form rational basis functions and put in r vector
for i in range(1, npts+1):
if s != 0.0:
r[i] = (temp[i]*h[i])/s
else:
r[i] = 0
# ------------------------------------------------------------------------------
# Generates a rational B-spline curve using a uniform open knot vector.
#
# C code for An Introduction to NURBS
# by David F. Rogers. Copyright (C) 2000 David F. Rogers,
# All rights reserved.
#
# Name: rbspline.c
# Subroutines called: _knot, rbasis
# Book reference: Chapter 4, Alg. p. 297
#
# b = array containing the defining polygon vertices
# b[1] contains the x-component of the vertex
# b[2] contains the y-component of the vertex
# b[3] contains the z-component of the vertex
# h = array containing the homogeneous weighting factors
# k = order of the B-spline basis function
# nbasis = array containing the basis functions for a single value of t
# nplusc = number of knot values
# npts = number of defining polygon vertices
# p[,] = array containing the curve points
# p[1] contains the x-component of the point
# p[2] contains the y-component of the point
# p[3] contains the z-component of the point
# p1 = number of points to be calculated on the curve
# t = parameter value 0 <= t <= npts - k + 1
# x[] = array containing the knot vector
# ------------------------------------------------------------------------------
def _rbspline(npts, k, p1, b, h, p, x):
nplusc = npts + k
nbasis = [0.0]*(npts+1) # zero and re-dimension the basis array
# generate the uniform open knot vector
if x is None or len(x) != nplusc+1:
x = _knot(npts, k)
icount = 0
# calculate the points on the rational B-spline curve
t = 0
step = float(x[nplusc])/float(p1-1)
for i1 in range(1, p1+1):
if x[nplusc] - t < 5e-6:
t = x[nplusc]
# generate the basis function for this value of t
nbasis = [0.0]*(npts+1) # zero and re-dimension the knot vector and the basis array
_rbasis(k, t, npts, x, h, nbasis)
# generate a point on the curve
for j in range(1, 4):
jcount = j
p[icount+j] = 0.0
# Do local matrix multiplication
for i in range(1, npts+1):
p[icount+j] += nbasis[i]*b[jcount]
jcount += 3
icount += 3
t += step
# ------------------------------------------------------------------------------
# Subroutine to generate a rational B-spline curve using an uniform periodic knot vector
#
# C code for An Introduction to NURBS
# by David F. Rogers. Copyright (C) 2000 David F. Rogers,
# All rights reserved.
#
# Name: rbsplinu.c
# Subroutines called: _knotu, _rbasis
# Book reference: Chapter 4, Alg. p. 298
#
# b[] = array containing the defining polygon vertices
# b[1] contains the x-component of the vertex
# b[2] contains the y-component of the vertex
# b[3] contains the z-component of the vertex
# h[] = array containing the homogeneous weighting factors
# k = order of the B-spline basis function
# nbasis = array containing the basis functions for a single value of t
# nplusc = number of knot values
# npts = number of defining polygon vertices
# p[,] = array containing the curve points
# p[1] contains the x-component of the point
# p[2] contains the y-component of the point
# p[3] contains the z-component of the point
# p1 = number of points to be calculated on the curve
# t = parameter value 0 <= t <= npts - k + 1
# x[] = array containing the knot vector
# ------------------------------------------------------------------------------
def _rbsplinu(npts, k, p1, b, h, p, x=None):
nplusc = npts + k
nbasis = [0.0]*(npts+1) # zero and re-dimension the basis array
# generate the uniform periodic knot vector
if x is None or len(x) != nplusc+1:
# zero and re dimension the knot vector and the basis array
x = _knotu(npts, k)
icount = 0
# calculate the points on the rational B-spline curve
t = k-1
step = (float(npts)-(k-1))/float(p1-1)
for i1 in range(1, p1+1):
if x[nplusc] - t < 5e-6:
t = x[nplusc]
# generate the basis function for this value of t
nbasis = [0.0]*(npts+1)
_rbasis(k, t, npts, x, h, nbasis)
# generate a point on the curve
for j in range(1,4):
jcount = j
p[icount+j] = 0.0
# Do local matrix multiplication
for i in range(1,npts+1):
p[icount+j] += nbasis[i]*b[jcount]
jcount += 3
icount += 3
t += step
# =============================================================================
if __name__ == "__main__":
SPLINE_SEGMENTS = 20
from dxf import DXF
# from dxfwrite.algebra import CubicSpline, CubicBezierCurve
dxf = DXF(sys.argv[1],"r")
dxf.readFile()
dxf.close()
for name,layer in dxf.layers.items():
for entity in layer.entities:
if entity.type == "SPLINE":
xy = zip(entity[10], entity[20])
x,y = spline2Polyline(xy, int(entity[71]), True, SPLINE_SEGMENTS)
#for a,b in zip(x,y):
# print a,b