MC360IQA: A Multi-channel CNN for Blind 360-degree Image Quality Assessment
If you want to train the code on your database (e.g. CVIQ database ):
First, prepare the database
cd equi2cubic
ConvertCVIQtoCubic.m
Then
CUDA_VISIBLE_DEVICES=0 python train.py \
--num_epochs 10 \
--batch_size 40 \
--database CVIQ \
--data_dir /DATA/CVIQcubic \
--filename_train CVIQ/CVIQ_train.csv \
--filename_test CVIQ/CVIQ_test.csv \
--snapshot /DATA/ModelFolder/VRIQA \
--cross_validation_index 1
If you want to test the trained model on the test set:
CUDA_VISIBLE_DEVICES=1 python test.py \
--database CVIQ \
--data_dir /DATA/CVIQcubic \
--filename_test CVIQ/CVIQ_test.csv \
--snapshot /DATA/ModelFolder/VRIQA/CVIQ/1/CVIQ.pkl
If you just want to evaluate the quality of an equirectangular image:
CUDA_VISIBLE_DEVICES=0 python test_on_equirectangular.py \
--filename images/1.png \
--snapshot /DATA/ModelFolder/VRIQA/CVIQ/1/CVIQ.pkl
You can download the trained model via:
CVIQ: google drive baidu yun 提取码:5muh
OIQA: google drive baidu yun 提取码:39we
We recommend you to use the model trained on the OIQA database since it is more robust.
If you find this code is useful for your research, please cite:
@article{sun2019mc360iqa,
title={MC360IQA: A Multi-channel CNN for Blind 360-degree Image Quality Assessment},
author={Sun, Wei and Min, Xiongkuo and Zhai, Guangtao and Gu, Ke and Duan, Huiyu and Ma, Siwei},
journal={IEEE Journal of Selected Topics in Signal Processing},
volume={14},
number={1},
pages={64-77},
year={2020},
publisher={IEEE}
}