-
Notifications
You must be signed in to change notification settings - Fork 88
/
TestPhotoReal.py
118 lines (106 loc) · 4.56 KB
/
TestPhotoReal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import os
import cv2
import time
import torch
import argparse
import numpy as np
from PIL import Image
from libs.SPN import SPN
import torchvision.utils as vutils
from libs.utils import print_options
from libs.MatrixTest import MulLayer
import torch.backends.cudnn as cudnn
from libs.LoaderPhotoReal import Dataset
from libs.models import encoder3,encoder4
from libs.models import decoder3,decoder4
import torchvision.transforms as transforms
from libs.smooth_filter import smooth_filter
parser = argparse.ArgumentParser()
parser.add_argument("--vgg_dir", default='models/vgg_r41.pth',
help='pre-trained encoder path')
parser.add_argument("--decoder_dir", default='models/dec_r41.pth',
help='pre-trained decoder path')
parser.add_argument("--matrixPath", default='models/r41.pth',
help='pre-trained model path')
parser.add_argument("--stylePath", default="data/photo_real/style/images/",
help='path to style image')
parser.add_argument("--styleSegPath", default="data/photo_real/styleSeg/",
help='path to style image masks')
parser.add_argument("--contentPath", default="data/photo_real/content/images/",
help='path to content image')
parser.add_argument("--contentSegPath", default="data/photo_real/contentSeg/",
help='path to content image masks')
parser.add_argument("--outf", default="PhotoReal/",
help='path to save output images')
parser.add_argument("--batchSize", type=int,default=1,
help='batch size')
parser.add_argument('--fineSize', type=int, default=512,
help='image size')
parser.add_argument("--layer", default="r41",
help='features of which layer to transform, either r31 or r41')
parser.add_argument("--spn_dir", default='models/r41_spn.pth',
help='path to pretrained SPN model')
################# PREPARATIONS #################
opt = parser.parse_args()
opt.cuda = torch.cuda.is_available()
print_options(opt)
os.makedirs(opt.outf, exist_ok=True)
cudnn.benchmark = True
################# DATA #################
dataset = Dataset(opt.contentPath,opt.stylePath,opt.contentSegPath,opt.styleSegPath,opt.fineSize)
loader = torch.utils.data.DataLoader(dataset=dataset,
batch_size=1,
shuffle=False)
################# MODEL #################
if(opt.layer == 'r31'):
vgg = encoder3()
dec = decoder3()
elif(opt.layer == 'r41'):
vgg = encoder4()
dec = decoder4()
matrix = MulLayer(opt.layer)
vgg.load_state_dict(torch.load(opt.vgg_dir))
dec.load_state_dict(torch.load(opt.decoder_dir))
matrix.load_state_dict(torch.load(opt.matrixPath))
spn = SPN()
spn.load_state_dict(torch.load(opt.spn_dir))
################# GLOBAL VARIABLE #################
contentV = torch.Tensor(opt.batchSize,3,opt.fineSize,opt.fineSize)
styleV = torch.Tensor(opt.batchSize,3,opt.fineSize,opt.fineSize)
whitenV = torch.Tensor(opt.batchSize,3,opt.fineSize,opt.fineSize)
################# GPU #################
if(opt.cuda):
vgg.cuda()
dec.cuda()
spn.cuda()
matrix.cuda()
contentV = contentV.cuda()
styleV = styleV.cuda()
whitenV = whitenV.cuda()
for i,(contentImg,styleImg,whitenImg,cmasks,smasks,imname) in enumerate(loader):
imname = imname[0]
contentV.resize_(contentImg.size()).copy_(contentImg)
styleV.resize_(styleImg.size()).copy_(styleImg)
whitenV.resize_(whitenImg.size()).copy_(whitenImg)
# forward
sF = vgg(styleV)
cF = vgg(contentV)
with torch.no_grad():
if(opt.layer == 'r41'):
feature = matrix(cF[opt.layer],sF[opt.layer],cmasks,smasks)
else:
feature = matrix(cF,sF,cmasks,smasks)
transfer = dec(feature)
filtered = spn(transfer,whitenV)
vutils.save_image(transfer,os.path.join(opt.outf,'%s_transfer.png'%(imname.split('.')[0])))
filtered = filtered.clamp(0,1)
filtered = filtered.cpu()
vutils.save_image(filtered,'%s/%s_filtered.png'%(opt.outf,imname.split('.')[0]))
out_img = filtered.squeeze(0).mul(255).clamp(0,255).byte().permute(1,2,0).cpu().numpy()
content = contentImg.squeeze(0).mul(255).clamp(0,255).byte().permute(1,2,0).cpu().numpy()
content = content.copy()
out_img = out_img.copy()
smoothed = smooth_filter(out_img, content, f_radius=15, f_edge=1e-1)
smoothed.save('%s/%s_smooth.png'%(opt.outf,imname.split('.')[0]))
print('Transferred image saved at %s%s, filtered image saved at %s%s_filtered.png' \
%(opt.outf,imname,opt.outf,imname.split('.')[0]))