Skip to content

"HoHoNet: 360 Indoor Holistic Understanding with Latent Horizontal Features" official pytorch implementation.

License

Notifications You must be signed in to change notification settings

sunset1995/HoHoNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

HoHoNet

Code for our paper in CVPR 2021: HoHoNet: 360 Indoor Holistic Understanding with Latent Horizontal Features (paper, video).

teaser

News

  • April 3, 2021: Release inference code, jupyter notebook and visualization tools. Guide for reproduction is also finished.
  • March 4, 2021: A new backbone HarDNet is included, which shows better speed and depth accuracy.

Pretrained weight

Links to trained weights ckpt/: download on Google drive or download on Dropbox.

Inference

In below, we use an out-of-training-distribution 360 image from PanoContext as an example.

Jupyter notebook

See infer_depth.ipynb, infer_layout.ipynb, and infer_sem.ipynb for interactive demo and visualization.

Batch inference

Run infer_depth.py/infer_layout.py to inference depth/layout. Use --cfg and --pth to specify the path to config file and pretrained weight. Specify input path with --inp. Glob pattern for a batch of files is avaiable. The results are stored into --out directory with the same filename with extention set ot .depth.png and .layout.txt.

Example for depth:

python infer_depth.py --cfg config/mp3d_depth/HOHO_depth_dct_efficienthc_TransEn1_hardnet.yaml --pth ckpt/mp3d_depth_HOHO_depth_dct_efficienthc_TransEn1_hardnet/ep60.pth --out assets/ --inp assets/pano_asmasuxybohhcj.png

Example for layout:

python infer_layout.py --cfg config/mp3d_layout/HOHO_layout_aug_efficienthc_Transen1_resnet34.yaml --pth ckpt/mp3d_layout_HOHO_layout_aug_efficienthc_Transen1_resnet34/ep300.pth --out assets/ --inp assets/pano_asmasuxybohhcj.png

Visualization tools

To visualize layout as 3D mesh, run:

python vis_layout.py --img assets/pano_asmasuxybohhcj.png --layout assets/pano_asmasuxybohhcj.layout.txt

Rendering options: --show_ceiling, --ignore_floor, --ignore_wall, --ignore_wireframe are available. Set --out to export the mesh to ply file. Set --no_vis to disable the visualization.

To visualize depth as point cloud, run:

python vis_depth.py --img assets/pano_asmasuxybohhcj.png --depth assets/pano_asmasuxybohhcj.depth.png

Rendering options: --crop_ratio, --crop_z_above.

Reproduction

Please see README_reproduction.md for the guide to:

  1. prepare the datasets for each task in our paper
  2. reproduce the training for each task
  3. reproduce the numerical results in our paper with the provided pretrained weights

Citation

@inproceedings{SunSC21,
  author    = {Cheng Sun and
               Min Sun and
               Hwann{-}Tzong Chen},
  title     = {HoHoNet: 360 Indoor Holistic Understanding With Latent Horizontal
               Features},
  booktitle = {CVPR},
  year      = {2021},
}