Skip to content

Latest commit

 

History

History
1303 lines (937 loc) · 43.5 KB

USAGE_EN.md

File metadata and controls

1303 lines (937 loc) · 43.5 KB

[toc]

Overview

nncase provides both python wheel package and ncc client to compile your neural models.

  • nncase wheel package can be downloaded at nncase release, target wheel package except for both cpu and K210 can be got from nncase sdk for your target.
  • For ncc client, you should git clone nncase repository and then build it by yourself.

nncase python APIs

nncase provides Python APIs to compile neural network model and inference on your PC.

Installation

You can make use of nncase docker image(Ubuntu 20.04 + Python 3.8) if you do not have Ubuntu development.

$ docker pull registry.cn-hangzhou.aliyuncs.com/kendryte/nncase:latest
$ docker run -it --rm -v `pwd`:/mnt -w /mnt registry.cn-hangzhou.aliyuncs.com/kendryte/nncase:latest /bin/bash -c "/bin/bash"

Take Ubuntu 20.04 + Python 3.8 for example

root@f74598de4a02:/mnt# pip3 install nncase_github/nncase-1.0.0.20211029-cp38-cp38-manylinux_2_24_x86_64.whl

You should get and install target wheel package from your nncase sdk if you do not take cpu/K210 as your target

nncase compile model APIs

CompileOptions

Description

CompileOptions is used to configure compile options for nncase.

Definition

py::class_<compile_options>(m, "CompileOptions")
    .def(py::init())
    .def_readwrite("target", &compile_options::target)
    .def_readwrite("quant_type", &compile_options::quant_type)
    .def_readwrite("w_quant_type", &compile_options::w_quant_type)
    .def_readwrite("use_mse_quant_w", &compile_options::use_mse_quant_w)
    .def_readwrite("split_w_to_act", &compile_options::split_w_to_act)
    .def_readwrite("preprocess", &compile_options::preprocess)
    .def_readwrite("swapRB", &compile_options::swapRB)
    .def_readwrite("mean", &compile_options::mean)
    .def_readwrite("std", &compile_options::std)
    .def_readwrite("input_range", &compile_options::input_range)
    .def_readwrite("output_range", &compile_options::output_range)
    .def_readwrite("input_shape", &compile_options::input_shape)
    .def_readwrite("letterbox_value", &compile_options::letterbox_value)
    .def_readwrite("input_type", &compile_options::input_type)
    .def_readwrite("output_type", &compile_options::output_type)
    .def_readwrite("input_layout", &compile_options::input_layout)
    .def_readwrite("output_layout", &compile_options::output_layout)
    .def_readwrite("model_layout", &compile_options::model_layout)
    .def_readwrite("is_fpga", &compile_options::is_fpga)
    .def_readwrite("dump_ir", &compile_options::dump_ir)
    .def_readwrite("dump_asm", &compile_options::dump_asm)
    .def_readwrite("dump_quant_error", &compile_options::dump_quant_error)
    .def_readwrite("dump_dir", &compile_options::dump_dir)
    .def_readwrite("benchmark_only", &compile_options::benchmark_only);

The details of all attributes are following.

Attribute Data Type Required Description
target string Y Specify the compile target, such as 'k210', 'k510'
quant_type string N Specify the quantization type for input data , such as 'uint8', 'int8', 'int16'
w_quant_type string N Specify the quantization type for weight , such as 'uint8'(by default), 'int8', 'int16'
use_mse_quant_w bool N Specify whether use mean-square error when quantizing weight
split_w_to_act bool N Specify whether split weight into activation
preprocess bool N Whether enable preprocess, False by default
swapRB bool N Whether swap red and blue channel for RGB data(from RGB to BGR or from BGR to RGB), False by default
mean list N Normalize mean value for preprocess, [0, 0, 0] by default
std list N Normalize std value for preprocess, [1, 1, 1] by default
input_range list N The float range for dequantized input data, [0,1] by default
output_range list N The float range for quantized output data, [ ] by default
input_shape list N Specify the shape of input data. input_shape should be consistent with input _layout. There will be letterbox operations(Such as resize/pad) if input_shape is not the same as input shape of model.
letterbox_value float N Specify the pad value of letterbox during preprocess.
input_type string N Specify the data type of input data, 'float32' by default.
output_type string N Specify the data type of output data, 'float32' by default.
input_layout string N Specify the layout of input data, such as 'NCHW', 'NHWC'. Nncase will insert transpose operation if input_layout is different with the layout of model.
output_layout string N Specify the layout of output data, such as 'NCHW', 'NHWC'. Nncase will insert transpose operation if output_layout is different with the layout of model.
model_layout string N Specific the layout of model when the layout of tflite model is "NCHW" and the layout of Onnx model or Caffe model is "NHWC", default is empty.
is_fpga bool N Specify the generated kmodel is used for fpga or not, False by default.
dump_ir bool N Specify whether dump IR, False by default.
dump_asm bool N Specify whether dump asm file, False by default.
dump_quant_error bool N Specify whether dump quantization error, False by default.
dump_dir string N Specify dump directory
benchmark_only bool N Specify whether the generated kmodel is used for benchmark, False by default.
  1. Both mean and std are floating numbers to normalize.
  2. input_range is the range for floating numbers. If the input_type is uint8, input_range means the dequantized range of uint8.
  3. input_shape should be consistent with onput_layout. Take [1,224,224,3] for example. If input_layout is 'NCHW',input_shape should be [1,3,224,224], or input_shape should be [1,224,224,3];

Examples

  1. input_type is uint8,range is [0, 255],input_range is also [0, 255],so preprocess will convert input data from uint8 to float32.
  2. input_type is uint8,range is [0, 255],input_range is [0, 1],so preprocess will dequantize the input data from uint8 to float32。

Example

# compile_options
compile_options = nncase.CompileOptions()
compile_options.target = target
compile_options.input_type = 'float32'  # or 'uint8' 'int8'
compile_options.output_type = 'float32'  # or 'uint8' 'int8'. Only work in PTQ
compile_options.output_range = []  # Only work in PTQ and output type is not "float32"
compile_options.preprocess = True  # if False, the args below will unworked
compile_options.swapRB = True
compile_options.input_shape = [1, 224, 224, 3]  # keep layout same as input layout
compile_options.input_layout = 'NHWC'
compile_options.output_layout = 'NHWC'
compile_options.model_layout = ''  # default is empty. Specific it when tflite model with "NCHW" layout and Onnx(Caffe) model with "NHWC" layout
compile_options.mean = [0, 0, 0]
compile_options.std = [1, 1, 1]
compile_options.input_range = [0, 1]
compile_options.letterbox_value = 114.  # pad what you want
compile_options.dump_ir = True
compile_options.dump_asm = True
compile_options.dump_dir = 'tmp'

ImportOptions

Description

ImportOptions is used to configure import options.

Definition

py::class_<import_options>(m, "ImportOptions")
    .def(py::init())
    .def_readwrite("output_arrays", &import_options::output_arrays);

The details of all attributes are following.

Attribute Data Type Required Description
output_arrays string N output array name

Example

# import_options
import_options = nncase.ImportOptions()
import_options.output_arrays = 'output' # Your output node name

PTQTensorOptions

Description

PTQTensorOptions is used to configure PTQ options.

Definition

py::class_<ptq_tensor_options>(m, "PTQTensorOptions")
    .def(py::init())
    .def_readwrite("calibrate_method", &ptq_tensor_options::calibrate_method)
    .def_readwrite("samples_count", &ptq_tensor_options::samples_count)
    .def("set_tensor_data", [](ptq_tensor_options &o, py::bytes bytes) {
        uint8_t *buffer;
        py::ssize_t length;
        if (PyBytes_AsStringAndSize(bytes.ptr(), reinterpret_cast<char **>(&buffer), &length))
            throw std::invalid_argument("Invalid bytes");
        o.tensor_data.assign(buffer, buffer + length);
    });

The details of all attributes are following.

Attribute Data Type Required Description
calibrate_method string N Specify calibrate method, such as 'no_clip', 'l2', 'kld_m0', 'kld_m1', 'kld_m2' and 'cdf', 'no_clip' by default.
samples_count int N Specify the number of samples.

set_tensor_data()

Description

Set data for tensor.

Definition
set_tensor_data(calib_data)
Parameters
Attribute Data Type Required Description
calib_data byte[] Y The data for calibrating.
Returns

N/A

Example
# ptq_options
ptq_options = nncase.PTQTensorOptions()
ptq_options.samples_count = cfg.generate_calibs.batch_size
ptq_options.set_tensor_data(np.asarray([sample['data'] for sample in self.calibs]).tobytes())

Compiler

Description

Compiler is used to compile models.

Definition

py::class_<compiler>(m, "Compiler")
    .def(py::init(&compiler::create))
    .def("import_tflite", &compiler::import_tflite)
    .def("import_onnx", &compiler::import_onnx)
    .def("import_caffe", &compiler::import_caffe)
    .def("compile", &compiler::compile)
    .def("use_ptq", py::overload_cast<ptq_tensor_options>(&compiler::use_ptq))
    .def("gencode", [](compiler &c, std::ostream &stream) { c.gencode(stream); })
    .def("gencode_tobytes", [](compiler &c) {
        std::stringstream ss;
        c.gencode(ss);
        return py::bytes(ss.str());
    })
    .def("create_evaluator", [](compiler &c, uint32_t stage) {
        auto &graph = c.graph(stage);
        return std::make_unique<graph_evaluator>(c.target(), graph);
    });

Example

compiler = nncase.Compiler(compile_options)

import_tflite()

Description

Import tflite model.

Definition
import_tflite(model_content, import_options)
Parameters
Attribute Data Type Required Description
model_content byte[] Y The content of model.
import_options ImportOptions Y Import options
Returns

N/A

Example
model_content = read_model_file(model)
compiler.import_tflite(model_content, import_options)

import_onnx()

Description

Import onnx model.

Definition
import_onnx(model_content, import_options)
Parameters
Attribute Data Type Required Description
model_content byte[] Y The content of model.
import_options ImportOptions Y Import options
Returns

N/A

Example
model_content = read_model_file(model)
compiler.import_onnx(model_content, import_options)

import_caffe()

Description

Import caffe model.

User should build and install caffe locally.

Definition
import_caffe(caffemodel, prototxt)
Parameters
Attribute Data Type Required Description
caffemodel byte[] Y The content of caffemodel.
prototxt byte[] Y The content of prototxt.
Returns

N/A

Example
# import
caffemodel = read_model_file('test.caffemodel')
prototxt = read_model_file('test.prototxt')
compiler.import_caffe(caffemodel, prototxt)

use_ptq()

Description

Enable PTQ.

Definition
use_ptq(ptq_options)
Parameters
Attribute Data Type Required Description
ptq_options PTQTensorOptions Y PTQ options.
Returns

N/A

Example
compiler.use_ptq(ptq_options)

compile()

Description

Compile model.

Definition
compile()
Parameters

N/A

Returns

N/A

Example
compiler.compile()

gencode_tobytes()

Description

Generate byte code for model.

Definition
gencode_tobytes()
Parameters

N/A

Returns

bytes[]

Example
kmodel = compiler.gencode_tobytes()
with open(os.path.join(infer_dir, 'test.kmodel'), 'wb') as f:
    f.write(kmodel)

Examples for compiling model

Compile float32 model for tflite

import nncase

def read_model_file(model_file):
    with open(model_file, 'rb') as f:
        model_content = f.read()
    return model_content

def main():
    model='examples/mobilenetv2/data/model_f32.tflite'
    target = 'k510'

    # compile_options
    compile_options = nncase.CompileOptions()
    compile_options.target = target
    compile_options.dump_ir = True
    compile_options.dump_asm = True
    compile_options.dump_dir = 'tmp'

    # compiler
    compiler = nncase.Compiler(compile_options)

    # import_options
    import_options = nncase.ImportOptions()

    # import
    model_content = read_model_file(model)
    compiler.import_tflite(model_content, import_options)

    # compile
    compiler.compile()

    # kmodel
    kmodel = compiler.gencode_tobytes()
    with open('test.kmodel', 'wb') as f:
        f.write(kmodel)

if __name__ == '__main__':
    main()

Compile float32 model for onnx

Use ONNX Simplifier to simplify onnx model before using nncase.

import os
import onnxsim
import onnx
import nncase

def parse_model_input_output(model_file):
    onnx_model = onnx.load(model_file)
    input_all = [node.name for node in onnx_model.graph.input]
    input_initializer = [node.name for node in onnx_model.graph.initializer]
    input_names = list(set(input_all) - set(input_initializer))
    input_tensors = [node for node in onnx_model.graph.input if node.name in input_names]

    # input
    inputs= []
    for _, e in enumerate(input_tensors):
        onnx_type = e.type.tensor_type
        input_dict = {}
        input_dict['name'] = e.name
        input_dict['dtype'] = onnx.mapping.TENSOR_TYPE_TO_NP_TYPE[onnx_type.elem_type]
        input_dict['shape'] = [(i.dim_value if i.dim_value != 0 else d) for i, d in zip(
            onnx_type.shape.dim, [1, 3, 224, 224])]
        inputs.append(input_dict)


    return onnx_model, inputs

def onnx_simplify(model_file):
    onnx_model, inputs = parse_model_input_output(model_file)
    onnx_model = onnx.shape_inference.infer_shapes(onnx_model)
    input_shapes = {}
    for input in inputs:
        input_shapes[input['name']] = input['shape']

    onnx_model, check = onnxsim.simplify(onnx_model, input_shapes=input_shapes)
    assert check, "Simplified ONNX model could not be validated"

    model_file = os.path.join(os.path.dirname(model_file), 'simplified.onnx')
    onnx.save_model(onnx_model, model_file)
    return model_file


def read_model_file(model_file):
    with open(model_file, 'rb') as f:
        model_content = f.read()
    return model_content


def main():
    model_file = 'examples/mobilenetv2/data/mobilenetv2-7.onnx'
    target = 'k510'

    # onnx simplify
    model_file = onnx_simplify(model_file)

    # compile_options
    compile_options = nncase.CompileOptions()
    compile_options.target = target
    compile_options.dump_ir = True
    compile_options.dump_asm = True
    compile_options.dump_dir = 'tmp'

    # compiler
    compiler = nncase.Compiler(compile_options)

    # import_options
    import_options = nncase.ImportOptions()

    # import
    model_content = read_model_file(model_file)
    compiler.import_onnx(model_content, import_options)

    # compile
    compiler.compile()

    # kmodel
    kmodel = compiler.gencode_tobytes()
    with open('test.kmodel', 'wb') as f:
        f.write(kmodel)

if __name__ == '__main__':
    main()

Compile float32 model for caffe

You can get caffe wheel package at kendryte caffe.

import nncase

def read_model_file(model_file):
    with open(model_file, 'rb') as f:
        model_content = f.read()
    return model_content

def main():
    target = 'k510'

    # compile_options
    compile_options = nncase.CompileOptions()
    compile_options.target = target
    compile_options.dump_ir = True
    compile_options.dump_asm = True
    compile_options.dump_dir = 'tmp'

    # compiler
    compiler = nncase.Compiler(compile_options)

    # import_options
    import_options = nncase.ImportOptions()

    # import
    caffemodel = read_model_file('examples/conv2d_caffe/test.caffemodel')
    prototxt = read_model_file('examples/conv2d_caffe/test.prototxt')
    compiler.import_caffe(caffemodel, prototxt)

    # compile
    compiler.compile()

    # kmodel
    kmodel = compiler.gencode_tobytes()
    with open('test.kmodel', 'wb') as f:
        f.write(kmodel)

if __name__ == '__main__':
    main()

Compile float32 model for tflite with preprocessing

import nncase

def read_model_file(model_file):
    with open(model_file, 'rb') as f:
        model_content = f.read()
    return model_content

def main():
    model='examples/mobilenetv2/data/model_f32.tflite'
    target = 'k510'

    # compile_options
    compile_options = nncase.CompileOptions()
    compile_options.target = target
    compile_options.input_type = 'float32'  # or 'uint8' 'int8'
    compile_options.preprocess = True # if False, the args below will unworked
    compile_options.swapRB = True
    compile_options.input_shape = [1,224,224,3] # keep layout same as input layout
    compile_options.input_layout = 'NHWC'
    compile_options.output_layout = 'NHWC'
    compile_options.mean = [0,0,0]
    compile_options.std = [1,1,1]
    compile_options.input_range = [0,1]
    compile_options.letterbox_value = 114. # pad what you want
    compile_options.dump_ir = True
    compile_options.dump_asm = True
    compile_options.dump_dir = 'tmp'

    # compiler
    compiler = nncase.Compiler(compile_options)

    # import_options
    import_options = nncase.ImportOptions()

    # import
    model_content = read_model_file(model)
    compiler.import_tflite(model_content, import_options)

    # compile
    compiler.compile()

    # kmodel
    kmodel = compiler.gencode_tobytes()
    with open('test.kmodel', 'wb') as f:
        f.write(kmodel)

if __name__ == '__main__':
    main()

Compile uint8 model for tflite

import nncase
import numpy as np

def read_model_file(model_file):
    with open(model_file, 'rb') as f:
        model_content = f.read()
    return model_content

def generate_data(shape, batch):
    shape[0] *= batch
    data = np.random.rand(*shape).astype(np.float32)
    return data

def main():
    model='examples/mobilenetv2/data/model_f32.tflite'
    input_shape = [1,224,224,3]
    target = 'k510'

    # compile_options
    compile_options = nncase.CompileOptions()
    compile_options.target = target
    compile_options.input_type = 'float32'
    compile_options.input_layout = 'NHWC'
    compile_options.output_layout = 'NHWC'
    compile_options.dump_ir = True
    compile_options.dump_asm = True
    compile_options.dump_dir = 'tmp'

    # compiler
    compiler = nncase.Compiler(compile_options)

    # import_options
    import_options = nncase.ImportOptions()

    # quantize model
    compile_options.quant_type = 'uint8' # or 'int8' 'int16'

    # ptq_options
    ptq_options = nncase.PTQTensorOptions()
    ptq_options.samples_count = 10
    ptq_options.set_tensor_data(generate_data(input_shape, ptq_options.samples_count).tobytes())

    # import
    model_content = read_model_file(model)
    compiler.import_tflite(model_content, import_options)

    # compile
    compiler.use_ptq(ptq_options)
    compiler.compile()

    # kmodel
    kmodel = compiler.gencode_tobytes()
    with open('test.kmodel', 'wb') as f:
        f.write(kmodel)

if __name__ == '__main__':
    main()

Deploy nncase runtime

K210

  1. Download k210-runtime.zip from Release page.
  2. Unzip to your kendryte-standalone-sdk 's lib/nncase/v1 directory.

nncase inference APIs

Nncase provides inference APIs to inference kmodel. You can make use of it to check the result with runtime for deep learning frameworks.

MemoryRange

Description

MemoryRange is used to describe the range to memory.

Definition

py::class_<memory_range>(m, "MemoryRange")
    .def_readwrite("location", &memory_range::memory_location)
    .def_property(
        "dtype", [](const memory_range &range) { return to_dtype(range.datatype); },
        [](memory_range &range, py::object dtype) { range.datatype = from_dtype(py::dtype::from_args(dtype)); })
    .def_readwrite("start", &memory_range::start)
    .def_readwrite("size", &memory_range::size);

The details of all attributes are following.

Attribute Data Type Required Description
location int N Specify the location of memory. 0 means input, 1 means output, 2 means rdata, 3 means data, 4 means shared_data.
dtype python data type N data type
start int N The start of memory
size int N The size of memory

Example

mr = nncase.MemoryRange()

RuntimeTensor

Description

RuntimeTensor is used to describe the runtime tensor.

Definition

py::class_<runtime_tensor>(m, "RuntimeTensor")
    .def_static("from_numpy", [](py::array arr) {
        auto src_buffer = arr.request();
        auto datatype = from_dtype(arr.dtype());
        auto tensor = host_runtime_tensor::create(
            datatype,
            to_rt_shape(src_buffer.shape),
            to_rt_strides(src_buffer.itemsize, src_buffer.strides),
            gsl::make_span(reinterpret_cast<gsl::byte *>(src_buffer.ptr), src_buffer.size * src_buffer.itemsize),
            [=](gsl::byte *) { arr.dec_ref(); })
                          .unwrap_or_throw();
        arr.inc_ref();
        return tensor;
    })
    .def("copy_to", [](runtime_tensor &from, runtime_tensor &to) {
        from.copy_to(to).unwrap_or_throw();
    })
    .def("to_numpy", [](runtime_tensor &tensor) {
        auto host = tensor.as_host().unwrap_or_throw();
        auto src_map = std::move(hrt::map(host, hrt::map_read).unwrap_or_throw());
        auto src_buffer = src_map.buffer();
        return py::array(
            to_dtype(tensor.datatype()),
            tensor.shape(),
            to_py_strides(runtime::get_bytes(tensor.datatype()), tensor.strides()),
            src_buffer.data());
    })
    .def_property_readonly("dtype", [](runtime_tensor &tensor) {
        return to_dtype(tensor.datatype());
    })
    .def_property_readonly("shape", [](runtime_tensor &tensor) {
        return to_py_shape(tensor.shape());
    });

The details of all attributes are following.

Attribute Data Type Required Description
dtype int N The data type of tensor
shape list N The shape of tensor

from_numpy()

Description

Construct RuntimeTensor from numpy.ndarray

Definition
from_numpy(py::array arr)
Parameters
Attribute Data Type Required Description
arr numpy.ndarray Y numpy.ndarray
Returns

RuntimeTensor

Example
tensor = nncase.RuntimeTensor.from_numpy(self.inputs[i]['data'])

copy_to()

Description

Copy RuntimeTensor

Definition
copy_to(RuntimeTensor to)
Parameters
Attribute Data Type Required Description
to RuntimeTensor Y RuntimeTensor
Returns

N/A

Example
sim.get_output_tensor(i).copy_to(to)

to_numpy()

Description

Convert RuntimeTensor to numpy.ndarray.

Definition
to_numpy()
Parameters

N/A

Returns

numpy.ndarray

Example
arr = sim.get_output_tensor(i).to_numpy()

Simulator

Description

Simulator is used to inference kmodel on PC.

Definition

py::class_<interpreter>(m, "Simulator")
    .def(py::init())
    .def("load_model", [](interpreter &interp, gsl::span<const gsl::byte> buffer) { interp.load_model(buffer).unwrap_or_throw(); })
    .def_property_readonly("inputs_size", &interpreter::inputs_size)
    .def_property_readonly("outputs_size", &interpreter::outputs_size)
    .def("get_input_desc", &interpreter::input_desc)
    .def("get_output_desc", &interpreter::output_desc)
    .def("get_input_tensor", [](interpreter &interp, size_t index) { return interp.input_tensor(index).unwrap_or_throw(); })
    .def("set_input_tensor", [](interpreter &interp, size_t index, runtime_tensor tensor) { return interp.input_tensor(index, tensor).unwrap_or_throw(); })
    .def("get_output_tensor", [](interpreter &interp, size_t index) { return interp.output_tensor(index).unwrap_or_throw(); })
    .def("set_output_tensor", [](interpreter &interp, size_t index, runtime_tensor tensor) { return interp.output_tensor(index, tensor).unwrap_or_throw(); })
    .def("run", [](interpreter &interp) { interp.run().unwrap_or_throw(); });

The details of all attributes are following.

Attribute Data Type Required Description
inputs_size int N The number of inputs.
outputs_size int N The number of outputs.

Example

sim = nncase.Simulator()

load_model()

Description

Load kmodel.

Definition
load_model(model_content)
Parameters
Attribute Data Type Required Description
model_content byte[] Y kmodel byte stream
Returns

N/A

Example
sim.load_model(kmodel)

get_input_desc()

Description

Get description for input.

Definition
get_input_desc(index)
Parameters
Attribute Data Type Required Description
index int Y The index for input.
Returns

MemoryRange

Example
input_desc_0 = sim.get_input_desc(0)

get_output_desc()

Description

Get description for output.

Definition
get_output_desc(index)
Parameters
Attribute Data Type Required Description
index int Y The index for output.
Returns

MemoryRange

Example
output_desc_0 = sim.get_output_desc(0)

get_input_tensor()

Description

Get the input runtime tensor with specified index.

Definition
get_input_tensor(index)
Parameters
Attribute Data Type Required Description
index int Y The index for input tensor.
Returns

RuntimeTensor

Example
input_tensor_0 = sim.get_input_tensor(0)

set_input_tensor()

Description

Set the input runtime tensor with specified index.

Definition
set_input_tensor(index, tensor)
Parameters
Attribute Data Type Required Description
index int Y The index for input tensor.
tensor RuntimeTensor Y RuntimeTensor
Returns

N/A

Example
sim.set_input_tensor(0, nncase.RuntimeTensor.from_numpy(self.inputs[0]['data']))

get_output_tensor()

Description

Get the output runtime tensor with specified index.

Definition
get_output_tensor(index)
Parameters
Attribute Data Type Required Description
index int Y The index for output tensor.
Returns

RuntimeTensor

Example
output_arr_0 = sim.get_output_tensor(0).to_numpy()

set_output_tensor()

Description

Set the RuntimeTensor with specified index.

Definition
set_output_tensor(index, tensor)
Parameters
Attribute Data Type Required Description
index int Y The index for output tensor.
tensor RuntimeTensor Y RuntimeTensor
Returns

N/A

Example
sim.set_output_tensor(0, tensor)

run()

Description

Run kmodel for inferencing.

Definition
run()
Parameters

N/A

Returns

N/A

Example
sim.run()

ncc

Comannd line

DESCRIPTION
NNCASE model compiler and inference tool.

SYNOPSIS
    ncc compile -i <input format> -t <target>
        <input file> [--input-prototxt <input prototxt>] <output file> [--output-arrays <output arrays>]
        [--quant-type <quant type>] [--w-quant-type <w quant type>] [--use-mse-quant-w]
        [--dataset <dataset path>] [--dataset-format <dataset format>] [--calibrate-method <calibrate method>]
        [--preprocess] [--swapRB] [--mean <normalize mean>] [--std <normalize std>]
        [--input-range <input range>] [--input-shape <input shape>] [--letterbox-value <letter box value>]
        [--input-type <input type>] [--output-type <output type>]
        [--input-layout <input layout>] [--output-layout <output layout>] [--tcu-num <tcu number>]
        [--is-fpga] [--dump-ir] [--dump-asm] [--dump-quant-error] [--dump-import-op-range] [--dump-dir <dump directory>]
        [--dump-range-dataset <dataset path>] [--dump-range-dataset-format <dataset format>] [--benchmark-only]

    ncc infer <input file> <output path>
        --dataset <dataset path> [--dataset-format <dataset format>]
        [--input-layout <input layout>]

    ncc [-v]

OPTIONS
  compile

  -i, --input-format <input format>
                          input format, e.g. tflite|onnx|caffe
  -t, --target <target>   target architecture, e.g. cpu|k210|k510
  <input file>            input file
  --input-prototxt <input prototxt>
                          input prototxt
  <output file>           output file
  --output-arrays <output arrays>
                          output arrays
  --quant-type <quant type>
                          post trainning quantize type, e.g uint8|int8|int16, default is uint8
  --w-quant-type <w quant type>
                          post trainning weights quantize type, e.g uint8|int8|int16, default is uint8
  --use-mse-quant-w       use min mse algorithm to refine weights quantilization or not, default is 0
  --dataset <dataset path>
                          calibration dataset, used in post quantization
  --dataset-format <dataset format>
                          datset format: e.g. image|raw, default is image
  --dump-range-dataset <dataset path>
                          dump import op range dataset
  --dump-range-dataset-format <dataset format>
                          datset format: e.g. image|raw, default is image
  --calibrate-method <calibrate method>
                          calibrate method: e.g. no_clip|l2|kld_m0|kld_m1|kld_m2|cdf, default is no_clip
  --preprocess            enable preprocess, default is 0
  --swapRB                swap red and blue channel, default is 0
  --mean <normalize mean> normalize mean, default is 0. 0. 0.
  --std <normalize std>   normalize std, default is 1. 1. 1.
  --input-range <input range>
                          float range after preprocess
  --input-shape <input shape>
                          shape for input data
  --letterbox-value <letter box value>
                          letter box pad value, default is 0.000000
  --input-type <input type>
                          input type, e.g float32|uint8|default, default is default
  --output-type <output type>
                          output type, e.g float32|uint8, default is float32
  --input-layout <input layout>
                          input layout, e.g NCHW|NHWC, default is NCHW
  --output-layout <output layout>
                          output layout, e.g NCHW|NHWC, default is NCHW
  --tcu-num <tcu number>  tcu number, e.g 1|2|3|4, default is 0
  --is-fpga               use fpga parameters, default is 0
  --dump-ir               dump ir to .dot, default is 0
  --dump-asm              dump assembly, default is 0
  --dump-quant-error      dump quant error, default is 0
  --dump-import-op-range  dump import op range, default is 0
  --dump-dir <dump directory>
                          dump to directory
  --benchmark-only        compile kmodel only for benchmark use, default is 0

  infer

  <model filename>        kmodel filename
  <output path>           output path
  --dataset <dataset path>
                          dataset path
  --dataset-format <dataset format>
                          dataset format, e.g. image|raw, default is image
  --input-layout <input layout>
                          input layout, e.g NCHW|NHWC, default is NCHW

Description

ncc is the nncase command line tool. It has two commands: compile and infer.

compile command compile your trained models (.tflite, .caffemodel, .onnx) to .kmodel.

  • -i, --input-format option is used to specify the input model format. nncase supports tflite, caffe and onnx input model currently.
  • -t, --target option is used to set your desired target device to run the model. cpu is the most general target that almost every platform should support. k210 is the Kendryte K210 SoC platform. If you set this option to k210, this model can only run on K210 or be emulated on your PC.
  • <input file> is your input model path.
  • --input-prototxt is the prototxt file for caffe model.
  • <output file> is the output model path.
  • --output-arrays is the names of nodes to output.
  • --quant-type is used to specify quantize type, such as uint8 by default and int8 and int16.
  • --w-quant-type is used to specify quantize type for weight, such as uint8 by default and int8 and int16.
  • --use-mse-quant-w is used to specify whether use minimize mse(mean-square error, mse) algorithm to quantize weight or not.
  • --dataset is to provide your quantization calibration dataset to quantize your models. You should put hundreds or thousands of data in training set to this directory.
  • --dataset-format is to set the format of the calibration dataset. Default is image, nncase will use opencv to read your images and autoscale to the desired input size of your model. If the input has 3 channels, ncc will convert images to RGB float tensors [0,1] in NCHW layout. If the input has only 1 channel, ncc will grayscale your images. Set to raw if your dataset is not image dataset for example, audio or matrices. In this scenario you should convert your dataset to raw binaries which contains float tensors.
  • --dump-range-dataset is to provide your dump range dataset to dump each op data range of your models. You should put hundreds or thousands of data in training set to this directory.
  • --dump-range-dataset-format is to set the format of the dump range dataset. Default is image, nncase will use opencv to read your images and autoscale to the desired input size of your model. If the input has 3 channels, ncc will convert images to RGB float tensors [0,1] in NCHW layout. If the input has only 1 channel, ncc will grayscale your images. Set to raw if your dataset is not image dataset for example, audio or matrices. In this scenario you should convert your dataset to raw binaries which contains float tensors.
  • --calibrate-method is to set your desired calibration method, which is used to select the optimal activation ranges. The default is no_clip in that ncc will use the full range of activations. If you want a better quantization result, you can use l2 but it will take a longer time to find the optimal ranges.
  • --preprocess is used specify whether enable preprocessing or not.
  • --swapRB is used specify whether swap red and blue channel or not. You can use this flag to implement RGB2BGR or BGR2RGB feature.
  • --mean is the mean values to be subtracted during preprocessing.
  • --std is the std values to be divided during preprocessing.
  • --input-range is the input range in float after dequantization.
  • --input-shape is used to specify the shape of input data. If the input shape is different from the input shape of your model, the preprocess will add resize/pad ops automatically for the transformation.
  • --letterbox-value is used to specify the pad values when pad is added during preprocessing.
  • --input-type is to set your desired input data type when do inference. If --input-type is uint8, for example you should provide RGB888 uint8 tensors when you do inference. If --input-type is float, you should provide RGB float tensors instead.
  • --output-type is the type of output data.
  • --input-layout is the layout of input data.
  • --output-layout is the layout of output data.
  • --tcu-num is used to configure the number of TCU. 0 means do not configure the number of TCU.
  • --is-fpga is a debug option. It is used to specify whether the kmodel run on fpga or not.
  • --dump-ir is a debug option. It is used to specify whether dump IR or not.
  • --dump-asm is a debug option. It is used to specify whether dump asm file or not.
  • --dump-quant-error is a debug option. It is used to specify whether dump quantization error information or not.
  • --dump-import-op-range is a debug option. It is used to specify whether dump imported op data range or not, need to also specify dump-range-dataset if enabled.
  • --dump-dir is used to specify dump directory.
  • --benchmark-only is used to specify whether the kmodel is used for benchmark or not.

infer command can run your kmodel, and it's often used as debug purpose. ncc will save the model's output tensors to .bin files in NCHW layout.

  • <input file> is your kmodel path.
  • <output path> is the output directory ncc will produce to.
  • --dataset is the test set directory.
  • --dataset-format and --input-layout have the same meaning as in compile command.