|
| 1 | +// Maximize difference between the Sum of the two halves of the Array |
| 2 | +// after removal of N elements |
| 3 | + |
| 4 | + |
| 5 | +// Given an integer N and array arr[] consisting of 3 * N integers, the task is to find the maximum difference between first half and second half of the array after the removal of exactly N elements from the array. |
| 6 | + |
| 7 | +// Examples: |
| 8 | + |
| 9 | +// Input: N = 2, arr[] = {3, 1, 4, 1, 5, 9} |
| 10 | +// Output: 1 |
| 11 | +// Explanation: |
| 12 | +// Removal of arr[1] and arr[5] from the array maximizes the difference = (3 + 4) – (1 + 5) = 7 – 6 = 1. |
| 13 | + |
| 14 | +// Input: N = 1, arr[] = {1, 2, 3} |
| 15 | +// Output: -1 |
| 16 | + |
| 17 | + |
| 18 | +#include <bits/stdc++.h> |
| 19 | +using namespace std; |
| 20 | + |
| 21 | +// Function to print the maximum difference |
| 22 | +// possible between the two halves of the array |
| 23 | +long long FindMaxDif(vector<long long> a, int m) |
| 24 | +{ |
| 25 | + int n = m / 3; |
| 26 | + |
| 27 | + vector<long long> l(m + 5), r(m + 5); |
| 28 | + |
| 29 | + // Stores n maximum values from the start |
| 30 | + multiset<long long> s; |
| 31 | + |
| 32 | + for (int i = 1; i <= m; i++) { |
| 33 | + |
| 34 | + // Insert first n elements |
| 35 | + if (i <= n) { |
| 36 | + |
| 37 | + // Update sum of largest n |
| 38 | + // elements from left |
| 39 | + l[i] = a[i - 1] + l[i - 1]; |
| 40 | + s.insert(a[i - 1]); |
| 41 | + } |
| 42 | + |
| 43 | + // For the remaining elements |
| 44 | + else { |
| 45 | + l[i] = l[i - 1]; |
| 46 | + |
| 47 | + // Obtain minimum value |
| 48 | + // in the set |
| 49 | + long long d = *s.begin(); |
| 50 | + |
| 51 | + // Insert only if it is greater |
| 52 | + // than minimum value |
| 53 | + if (a[i - 1] > d) { |
| 54 | + |
| 55 | + // Update sum from left |
| 56 | + l[i] -= d; |
| 57 | + l[i] += a[i - 1]; |
| 58 | + |
| 59 | + // Remove the minimum |
| 60 | + s.erase(s.find(d)); |
| 61 | + |
| 62 | + // Insert the current element |
| 63 | + s.insert(a[i - 1]); |
| 64 | + } |
| 65 | + } |
| 66 | + } |
| 67 | + |
| 68 | + // Clear the set |
| 69 | + s.clear(); |
| 70 | + |
| 71 | + // Store n minimum elements from the end |
| 72 | + for (int i = m; i >= 1; i--) { |
| 73 | + |
| 74 | + // Insert the last n elements |
| 75 | + if (i >= m - n + 1) { |
| 76 | + |
| 77 | + // Update sum of smallest n |
| 78 | + // elements from right |
| 79 | + r[i] = a[i - 1] + r[i + 1]; |
| 80 | + s.insert(a[i - 1]); |
| 81 | + } |
| 82 | + |
| 83 | + // For the remaining elements |
| 84 | + else { |
| 85 | + |
| 86 | + r[i] = r[i + 1]; |
| 87 | + |
| 88 | + // Obtain the minimum |
| 89 | + long long d = *s.rbegin(); |
| 90 | + |
| 91 | + // Insert only if it is smaller |
| 92 | + // than maximum value |
| 93 | + if (a[i - 1] < d) { |
| 94 | + |
| 95 | + // Update sum from right |
| 96 | + r[i] -= d; |
| 97 | + r[i] += a[i - 1]; |
| 98 | + |
| 99 | + // Remove the minimum |
| 100 | + s.erase(s.find(d)); |
| 101 | + |
| 102 | + // Insert the new element |
| 103 | + s.insert(a[i - 1]); |
| 104 | + } |
| 105 | + } |
| 106 | + } |
| 107 | + |
| 108 | + long long ans = -9e18L; |
| 109 | + |
| 110 | + for (int i = n; i <= m - n; i++) { |
| 111 | + |
| 112 | + // Compare the difference and |
| 113 | + // store the maximum |
| 114 | + ans = max(ans, l[i] - r[i + 1]); |
| 115 | + } |
| 116 | + |
| 117 | + // Return the maximum |
| 118 | + // possible difference |
| 119 | + return ans; |
| 120 | +} |
| 121 | + |
| 122 | +// Driver Code |
| 123 | +int main() |
| 124 | +{ |
| 125 | + |
| 126 | + vector<long long> vtr = { 3, 1, 4, 1, 5, 9 }; |
| 127 | + int n = vtr.size(); |
| 128 | + |
| 129 | + cout << FindMaxDif(vtr, n); |
| 130 | + |
| 131 | + return 0; |
| 132 | +} |
0 commit comments